This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of continuous functions from J to K is unaffected by k-ification of K , if J is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgencn3 | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1 2 | cnf | ⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 5 | cnvimass | ⊢ ( ◡ 𝑓 “ 𝑥 ) ⊆ dom 𝑓 | |
| 6 | 4 | fdmd | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → dom 𝑓 = ∪ 𝐽 ) |
| 7 | 6 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → dom 𝑓 = ∪ 𝐽 ) |
| 8 | 5 7 | sseqtrid | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → ( ◡ 𝑓 “ 𝑥 ) ⊆ ∪ 𝐽 ) |
| 9 | cnvresima | ⊢ ( ◡ ( 𝑓 ↾ 𝑦 ) “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) = ( ( ◡ 𝑓 “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) ∩ 𝑦 ) | |
| 10 | 4 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 11 | ffun | ⊢ ( 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 → Fun 𝑓 ) | |
| 12 | inpreima | ⊢ ( Fun 𝑓 → ( ◡ 𝑓 “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) = ( ( ◡ 𝑓 “ 𝑥 ) ∩ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ◡ 𝑓 “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) = ( ( ◡ 𝑓 “ 𝑥 ) ∩ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) ) |
| 14 | 13 | ineq1d | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ( ◡ 𝑓 “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) ∩ 𝑦 ) = ( ( ( ◡ 𝑓 “ 𝑥 ) ∩ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) ∩ 𝑦 ) ) |
| 15 | in32 | ⊢ ( ( ( ◡ 𝑓 “ 𝑥 ) ∩ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) ∩ 𝑦 ) = ( ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ∩ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) | |
| 16 | ssrin | ⊢ ( ( ◡ 𝑓 “ 𝑥 ) ⊆ dom 𝑓 → ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ⊆ ( dom 𝑓 ∩ 𝑦 ) ) | |
| 17 | 5 16 | ax-mp | ⊢ ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ⊆ ( dom 𝑓 ∩ 𝑦 ) |
| 18 | dminss | ⊢ ( dom 𝑓 ∩ 𝑦 ) ⊆ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) | |
| 19 | 17 18 | sstri | ⊢ ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ⊆ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) |
| 20 | 19 | a1i | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ⊆ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) |
| 21 | dfss2 | ⊢ ( ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ⊆ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ↔ ( ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ∩ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) = ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ) | |
| 22 | 20 21 | sylib | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ∩ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) = ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ) |
| 23 | 15 22 | eqtrid | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ( ( ◡ 𝑓 “ 𝑥 ) ∩ ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) ∩ 𝑦 ) = ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ) |
| 24 | 14 23 | eqtrd | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ( ◡ 𝑓 “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) ∩ 𝑦 ) = ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ) |
| 25 | 9 24 | eqtrid | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ◡ ( 𝑓 ↾ 𝑦 ) “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) = ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ) |
| 26 | simpr | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 27 | 26 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 28 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 ∪ 𝐽 → 𝑦 ⊆ ∪ 𝐽 ) | |
| 29 | 28 | ad2antrl | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
| 30 | 1 | cnrest | ⊢ ( ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑦 ⊆ ∪ 𝐽 ) → ( 𝑓 ↾ 𝑦 ) ∈ ( ( 𝐽 ↾t 𝑦 ) Cn 𝐾 ) ) |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( 𝑓 ↾ 𝑦 ) ∈ ( ( 𝐽 ↾t 𝑦 ) Cn 𝐾 ) ) |
| 32 | simpr | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → 𝐾 ∈ Top ) | |
| 33 | 32 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → 𝐾 ∈ Top ) |
| 34 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 35 | 33 34 | sylib | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 36 | df-ima | ⊢ ( 𝑓 “ 𝑦 ) = ran ( 𝑓 ↾ 𝑦 ) | |
| 37 | 36 | eqimss2i | ⊢ ran ( 𝑓 ↾ 𝑦 ) ⊆ ( 𝑓 “ 𝑦 ) |
| 38 | 37 | a1i | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ran ( 𝑓 ↾ 𝑦 ) ⊆ ( 𝑓 “ 𝑦 ) ) |
| 39 | imassrn | ⊢ ( 𝑓 “ 𝑦 ) ⊆ ran 𝑓 | |
| 40 | 10 | frnd | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ran 𝑓 ⊆ ∪ 𝐾 ) |
| 41 | 39 40 | sstrid | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( 𝑓 “ 𝑦 ) ⊆ ∪ 𝐾 ) |
| 42 | cnrest2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ran ( 𝑓 ↾ 𝑦 ) ⊆ ( 𝑓 “ 𝑦 ) ∧ ( 𝑓 “ 𝑦 ) ⊆ ∪ 𝐾 ) → ( ( 𝑓 ↾ 𝑦 ) ∈ ( ( 𝐽 ↾t 𝑦 ) Cn 𝐾 ) ↔ ( 𝑓 ↾ 𝑦 ) ∈ ( ( 𝐽 ↾t 𝑦 ) Cn ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ) ) ) | |
| 43 | 35 38 41 42 | syl3anc | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ( 𝑓 ↾ 𝑦 ) ∈ ( ( 𝐽 ↾t 𝑦 ) Cn 𝐾 ) ↔ ( 𝑓 ↾ 𝑦 ) ∈ ( ( 𝐽 ↾t 𝑦 ) Cn ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ) ) ) |
| 44 | 31 43 | mpbid | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( 𝑓 ↾ 𝑦 ) ∈ ( ( 𝐽 ↾t 𝑦 ) Cn ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ) ) |
| 45 | simplr | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) | |
| 46 | simprr | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( 𝐽 ↾t 𝑦 ) ∈ Comp ) | |
| 47 | imacmp | ⊢ ( ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) → ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ∈ Comp ) | |
| 48 | 27 46 47 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ∈ Comp ) |
| 49 | kgeni | ⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ∧ ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ∈ Comp ) → ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ∈ ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ) | |
| 50 | 45 48 49 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ∈ ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ) |
| 51 | cnima | ⊢ ( ( ( 𝑓 ↾ 𝑦 ) ∈ ( ( 𝐽 ↾t 𝑦 ) Cn ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ) ∧ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ∈ ( 𝐾 ↾t ( 𝑓 “ 𝑦 ) ) ) → ( ◡ ( 𝑓 ↾ 𝑦 ) “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) ∈ ( 𝐽 ↾t 𝑦 ) ) | |
| 52 | 44 50 51 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ◡ ( 𝑓 ↾ 𝑦 ) “ ( 𝑥 ∩ ( 𝑓 “ 𝑦 ) ) ) ∈ ( 𝐽 ↾t 𝑦 ) ) |
| 53 | 25 52 | eqeltrrd | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ ( 𝑦 ∈ 𝒫 ∪ 𝐽 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Comp ) ) → ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) |
| 54 | 53 | expr | ⊢ ( ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) ∧ 𝑦 ∈ 𝒫 ∪ 𝐽 ) → ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ) |
| 55 | 54 | ralrimiva | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → ∀ 𝑦 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ) |
| 56 | kgentop | ⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top ) | |
| 57 | 56 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → 𝐽 ∈ Top ) |
| 58 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 59 | 57 58 | sylib | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 60 | elkgen | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( ( ◡ 𝑓 “ 𝑥 ) ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( ( ◡ 𝑓 “ 𝑥 ) ⊆ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ) ) ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → ( ( ◡ 𝑓 “ 𝑥 ) ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( ( ◡ 𝑓 “ 𝑥 ) ⊆ ∪ 𝐽 ∧ ∀ 𝑦 ∈ 𝒫 ∪ 𝐽 ( ( 𝐽 ↾t 𝑦 ) ∈ Comp → ( ( ◡ 𝑓 “ 𝑥 ) ∩ 𝑦 ) ∈ ( 𝐽 ↾t 𝑦 ) ) ) ) ) |
| 62 | 8 55 61 | mpbir2and | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → ( ◡ 𝑓 “ 𝑥 ) ∈ ( 𝑘Gen ‘ 𝐽 ) ) |
| 63 | kgenidm | ⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) | |
| 64 | 63 | ad3antrrr | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) |
| 65 | 62 64 | eleqtrd | ⊢ ( ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ) → ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) |
| 66 | 65 | ralrimiva | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → ∀ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) |
| 67 | 56 58 | sylib | ⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 68 | kgentopon | ⊢ ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) → ( 𝑘Gen ‘ 𝐾 ) ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 69 | 34 68 | sylbi | ⊢ ( 𝐾 ∈ Top → ( 𝑘Gen ‘ 𝐾 ) ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 70 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( 𝑘Gen ‘ 𝐾 ) ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( 𝑓 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ↔ ( 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 71 | 67 69 70 | syl2an | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( 𝑓 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ↔ ( 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 72 | 71 | adantr | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑓 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ↔ ( 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑘Gen ‘ 𝐾 ) ( ◡ 𝑓 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 73 | 4 66 72 | mpbir2and | ⊢ ( ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) ∧ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝑓 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| 74 | 73 | ex | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝑓 ∈ ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ) ) |
| 75 | 74 | ssrdv | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) ⊆ ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |
| 76 | 69 | adantl | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( 𝑘Gen ‘ 𝐾 ) ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 77 | toponcom | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝑘Gen ‘ 𝐾 ) ∈ ( TopOn ‘ ∪ 𝐾 ) ) → 𝐾 ∈ ( TopOn ‘ ∪ ( 𝑘Gen ‘ 𝐾 ) ) ) | |
| 78 | 32 76 77 | syl2anc | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → 𝐾 ∈ ( TopOn ‘ ∪ ( 𝑘Gen ‘ 𝐾 ) ) ) |
| 79 | kgenss | ⊢ ( 𝐾 ∈ Top → 𝐾 ⊆ ( 𝑘Gen ‘ 𝐾 ) ) | |
| 80 | 79 | adantl | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → 𝐾 ⊆ ( 𝑘Gen ‘ 𝐾 ) ) |
| 81 | eqid | ⊢ ∪ ( 𝑘Gen ‘ 𝐾 ) = ∪ ( 𝑘Gen ‘ 𝐾 ) | |
| 82 | 81 | cnss2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ ( 𝑘Gen ‘ 𝐾 ) ) ∧ 𝐾 ⊆ ( 𝑘Gen ‘ 𝐾 ) ) → ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ⊆ ( 𝐽 Cn 𝐾 ) ) |
| 83 | 78 80 82 | syl2anc | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ⊆ ( 𝐽 Cn 𝐾 ) ) |
| 84 | 75 83 | eqssd | ⊢ ( ( 𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( 𝑘Gen ‘ 𝐾 ) ) ) |