This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioo2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR | ( A < x /\ x < B ) } ) |
|
| 2 | 1 | eleq2d | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> C e. { x e. RR | ( A < x /\ x < B ) } ) ) |
| 3 | breq2 | |- ( x = C -> ( A < x <-> A < C ) ) |
|
| 4 | breq1 | |- ( x = C -> ( x < B <-> C < B ) ) |
|
| 5 | 3 4 | anbi12d | |- ( x = C -> ( ( A < x /\ x < B ) <-> ( A < C /\ C < B ) ) ) |
| 6 | 5 | elrab | |- ( C e. { x e. RR | ( A < x /\ x < B ) } <-> ( C e. RR /\ ( A < C /\ C < B ) ) ) |
| 7 | 3anass | |- ( ( C e. RR /\ A < C /\ C < B ) <-> ( C e. RR /\ ( A < C /\ C < B ) ) ) |
|
| 8 | 6 7 | bitr4i | |- ( C e. { x e. RR | ( A < x /\ x < B ) } <-> ( C e. RR /\ A < C /\ C < B ) ) |
| 9 | 2 8 | bitrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR /\ A < C /\ C < B ) ) ) |