This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 13-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmul1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A x. C ) < ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1a | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) < ( B x. C ) ) |
|
| 2 | 1 | ex | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B -> ( A x. C ) < ( B x. C ) ) ) |
| 3 | oveq1 | |- ( A = B -> ( A x. C ) = ( B x. C ) ) |
|
| 4 | 3 | a1i | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A = B -> ( A x. C ) = ( B x. C ) ) ) |
| 5 | ltmul1a | |- ( ( ( B e. RR /\ A e. RR /\ ( C e. RR /\ 0 < C ) ) /\ B < A ) -> ( B x. C ) < ( A x. C ) ) |
|
| 6 | 5 | ex | |- ( ( B e. RR /\ A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B < A -> ( B x. C ) < ( A x. C ) ) ) |
| 7 | 6 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B < A -> ( B x. C ) < ( A x. C ) ) ) |
| 8 | 4 7 | orim12d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A = B \/ B < A ) -> ( ( A x. C ) = ( B x. C ) \/ ( B x. C ) < ( A x. C ) ) ) ) |
| 9 | 8 | con3d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( -. ( ( A x. C ) = ( B x. C ) \/ ( B x. C ) < ( A x. C ) ) -> -. ( A = B \/ B < A ) ) ) |
| 10 | simp1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. RR ) |
|
| 11 | simp3l | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. RR ) |
|
| 12 | 10 11 | remulcld | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A x. C ) e. RR ) |
| 13 | simp2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> B e. RR ) |
|
| 14 | 13 11 | remulcld | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B x. C ) e. RR ) |
| 15 | 12 14 | lttrid | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < ( B x. C ) <-> -. ( ( A x. C ) = ( B x. C ) \/ ( B x. C ) < ( A x. C ) ) ) ) |
| 16 | 10 13 | lttrid | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| 17 | 9 15 16 | 3imtr4d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < ( B x. C ) -> A < B ) ) |
| 18 | 2 17 | impbid | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A < B <-> ( A x. C ) < ( B x. C ) ) ) |