This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998) Avoid ax-10 , ax-11 , ax-12 . (Revised by TM, 24-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dm0rn0 | |- ( dom A = (/) <-> ran A = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( z = x -> ( z A y <-> x A y ) ) |
|
| 2 | breq2 | |- ( y = w -> ( z A y <-> z A w ) ) |
|
| 3 | 1 2 | excomw | |- ( E. z E. y z A y <-> E. y E. z z A y ) |
| 4 | breq2 | |- ( y = w -> ( x A y <-> x A w ) ) |
|
| 5 | 1 4 | sylan9bbr | |- ( ( y = w /\ z = x ) -> ( z A y <-> x A w ) ) |
| 6 | 5 | cbvex2vw | |- ( E. y E. z z A y <-> E. w E. x x A w ) |
| 7 | 3 6 | bitri | |- ( E. z E. y z A y <-> E. w E. x x A w ) |
| 8 | 7 | notbii | |- ( -. E. z E. y z A y <-> -. E. w E. x x A w ) |
| 9 | alnex | |- ( A. z -. E. y z A y <-> -. E. z E. y z A y ) |
|
| 10 | alnex | |- ( A. w -. E. x x A w <-> -. E. w E. x x A w ) |
|
| 11 | 8 9 10 | 3bitr4i | |- ( A. z -. E. y z A y <-> A. w -. E. x x A w ) |
| 12 | noel | |- -. z e. (/) |
|
| 13 | 12 | nbn | |- ( -. E. y z A y <-> ( E. y z A y <-> z e. (/) ) ) |
| 14 | 13 | albii | |- ( A. z -. E. y z A y <-> A. z ( E. y z A y <-> z e. (/) ) ) |
| 15 | noel | |- -. w e. (/) |
|
| 16 | 15 | nbn | |- ( -. E. x x A w <-> ( E. x x A w <-> w e. (/) ) ) |
| 17 | 16 | albii | |- ( A. w -. E. x x A w <-> A. w ( E. x x A w <-> w e. (/) ) ) |
| 18 | 11 14 17 | 3bitr3i | |- ( A. z ( E. y z A y <-> z e. (/) ) <-> A. w ( E. x x A w <-> w e. (/) ) ) |
| 19 | breq1 | |- ( x = z -> ( x A y <-> z A y ) ) |
|
| 20 | 19 | exbidv | |- ( x = z -> ( E. y x A y <-> E. y z A y ) ) |
| 21 | 20 | eqabcbw | |- ( { x | E. y x A y } = (/) <-> A. z ( E. y z A y <-> z e. (/) ) ) |
| 22 | 4 | exbidv | |- ( y = w -> ( E. x x A y <-> E. x x A w ) ) |
| 23 | 22 | eqabcbw | |- ( { y | E. x x A y } = (/) <-> A. w ( E. x x A w <-> w e. (/) ) ) |
| 24 | 18 21 23 | 3bitr4i | |- ( { x | E. y x A y } = (/) <-> { y | E. x x A y } = (/) ) |
| 25 | df-dm | |- dom A = { x | E. y x A y } |
|
| 26 | 25 | eqeq1i | |- ( dom A = (/) <-> { x | E. y x A y } = (/) ) |
| 27 | dfrn2 | |- ran A = { y | E. x x A y } |
|
| 28 | 27 | eqeq1i | |- ( ran A = (/) <-> { y | E. x x A y } = (/) ) |
| 29 | 24 26 28 | 3bitr4i | |- ( dom A = (/) <-> ran A = (/) ) |