This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem reex

Description: The real numbers form a set. See also reexALT . (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion reex
|- RR e. _V

Proof

Step Hyp Ref Expression
1 cnex
 |-  CC e. _V
2 ax-resscn
 |-  RR C_ CC
3 1 2 ssexi
 |-  RR e. _V