This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting the simple function F to the increasing sequence A ( n ) of measurable sets whose union is RR yields a sequence of simple functions whose integrals approach the integral of F . (Contributed by Mario Carneiro, 15-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg1climres.1 | |- ( ph -> A : NN --> dom vol ) |
|
| itg1climres.2 | |- ( ( ph /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) |
||
| itg1climres.3 | |- ( ph -> U. ran A = RR ) |
||
| itg1climres.4 | |- ( ph -> F e. dom S.1 ) |
||
| itg1climres.5 | |- G = ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
||
| Assertion | itg1climres | |- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> ( S.1 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1climres.1 | |- ( ph -> A : NN --> dom vol ) |
|
| 2 | itg1climres.2 | |- ( ( ph /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) |
|
| 3 | itg1climres.3 | |- ( ph -> U. ran A = RR ) |
|
| 4 | itg1climres.4 | |- ( ph -> F e. dom S.1 ) |
|
| 5 | itg1climres.5 | |- G = ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
|
| 6 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 7 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 8 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 9 | 4 8 | syl | |- ( ph -> ran F e. Fin ) |
| 10 | difss | |- ( ran F \ { 0 } ) C_ ran F |
|
| 11 | ssfi | |- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
|
| 12 | 9 10 11 | sylancl | |- ( ph -> ( ran F \ { 0 } ) e. Fin ) |
| 13 | 1zzd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 1 e. ZZ ) |
|
| 14 | i1fima | |- ( F e. dom S.1 -> ( `' F " { k } ) e. dom vol ) |
|
| 15 | 4 14 | syl | |- ( ph -> ( `' F " { k } ) e. dom vol ) |
| 16 | 15 | ad2antrr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( `' F " { k } ) e. dom vol ) |
| 17 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( A ` n ) e. dom vol ) |
| 18 | 17 | adantlr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` n ) e. dom vol ) |
| 19 | inmbl | |- ( ( ( `' F " { k } ) e. dom vol /\ ( A ` n ) e. dom vol ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol ) |
|
| 20 | 16 18 19 | syl2anc | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol ) |
| 21 | mblvol | |- ( ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 23 | inss1 | |- ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) |
|
| 24 | 23 | a1i | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) ) |
| 25 | mblss | |- ( ( `' F " { k } ) e. dom vol -> ( `' F " { k } ) C_ RR ) |
|
| 26 | 16 25 | syl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( `' F " { k } ) C_ RR ) |
| 27 | mblvol | |- ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
|
| 28 | 16 27 | syl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 29 | i1fima2sn | |- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
|
| 30 | 4 29 | sylan | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 31 | 30 | adantr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 32 | 28 31 | eqeltrrd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( `' F " { k } ) ) e. RR ) |
| 33 | ovolsscl | |- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) /\ ( `' F " { k } ) C_ RR /\ ( vol* ` ( `' F " { k } ) ) e. RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
|
| 34 | 24 26 32 33 | syl3anc | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
| 35 | 22 34 | eqeltrd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
| 36 | 35 | fmpttd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) : NN --> RR ) |
| 37 | 2 | adantlr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) |
| 38 | sslin | |- ( ( A ` n ) C_ ( A ` ( n + 1 ) ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
|
| 39 | 37 38 | syl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
| 40 | 1 | adantr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A : NN --> dom vol ) |
| 41 | peano2nn | |- ( n e. NN -> ( n + 1 ) e. NN ) |
|
| 42 | ffvelcdm | |- ( ( A : NN --> dom vol /\ ( n + 1 ) e. NN ) -> ( A ` ( n + 1 ) ) e. dom vol ) |
|
| 43 | 40 41 42 | syl2an | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` ( n + 1 ) ) e. dom vol ) |
| 44 | inmbl | |- ( ( ( `' F " { k } ) e. dom vol /\ ( A ` ( n + 1 ) ) e. dom vol ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol ) |
|
| 45 | 16 43 44 | syl2anc | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol ) |
| 46 | mblss | |- ( ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) |
|
| 47 | 45 46 | syl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) |
| 48 | ovolss | |- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) /\ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
|
| 49 | 39 47 48 | syl2anc | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 50 | mblvol | |- ( ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
|
| 51 | 45 50 | syl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 52 | 49 22 51 | 3brtr4d | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 53 | 52 | ralrimiva | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 54 | fveq2 | |- ( n = j -> ( A ` n ) = ( A ` j ) ) |
|
| 55 | 54 | ineq2d | |- ( n = j -> ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i ( A ` j ) ) ) |
| 56 | 55 | fveq2d | |- ( n = j -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) |
| 57 | eqid | |- ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
|
| 58 | fvex | |- ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) e. _V |
|
| 59 | 56 57 58 | fvmpt | |- ( j e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) |
| 60 | peano2nn | |- ( j e. NN -> ( j + 1 ) e. NN ) |
|
| 61 | fveq2 | |- ( n = ( j + 1 ) -> ( A ` n ) = ( A ` ( j + 1 ) ) ) |
|
| 62 | 61 | ineq2d | |- ( n = ( j + 1 ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 63 | 62 | fveq2d | |- ( n = ( j + 1 ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 64 | fvex | |- ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) e. _V |
|
| 65 | 63 57 64 | fvmpt | |- ( ( j + 1 ) e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 66 | 60 65 | syl | |- ( j e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 67 | 59 66 | breq12d | |- ( j e. NN -> ( ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) ) |
| 68 | 67 | ralbiia | |- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 69 | fvoveq1 | |- ( n = j -> ( A ` ( n + 1 ) ) = ( A ` ( j + 1 ) ) ) |
|
| 70 | 69 | ineq2d | |- ( n = j -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 71 | 70 | fveq2d | |- ( n = j -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 72 | 56 71 | breq12d | |- ( n = j -> ( ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) ) |
| 73 | 72 | cbvralvw | |- ( A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 74 | 68 73 | bitr4i | |- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
| 75 | 53 74 | sylibr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) ) |
| 76 | 75 | r19.21bi | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) ) |
| 77 | ovolss | |- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) /\ ( `' F " { k } ) C_ RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( `' F " { k } ) ) ) |
|
| 78 | 23 26 77 | sylancr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( `' F " { k } ) ) ) |
| 79 | 78 22 28 | 3brtr4d | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 80 | 79 | ralrimiva | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 81 | 59 | breq1d | |- ( j e. NN -> ( ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) ) |
| 82 | 81 | ralbiia | |- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 83 | 56 | breq1d | |- ( n = j -> ( ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) ) |
| 84 | 83 | cbvralvw | |- ( A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 85 | 82 84 | bitr4i | |- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 86 | 80 85 | sylibr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) ) |
| 87 | brralrspcev | |- ( ( ( vol ` ( `' F " { k } ) ) e. RR /\ A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) ) -> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) |
|
| 88 | 30 86 87 | syl2anc | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) |
| 89 | 6 13 36 76 88 | climsup | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ~~> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
| 90 | 20 | fmpttd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol ) |
| 91 | 39 | ralrimiva | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
| 92 | eqid | |- ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) |
|
| 93 | fvex | |- ( A ` j ) e. _V |
|
| 94 | 93 | inex2 | |- ( ( `' F " { k } ) i^i ( A ` j ) ) e. _V |
| 95 | 55 92 94 | fvmpt | |- ( j e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( ( `' F " { k } ) i^i ( A ` j ) ) ) |
| 96 | fvex | |- ( A ` ( j + 1 ) ) e. _V |
|
| 97 | 96 | inex2 | |- ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) e. _V |
| 98 | 62 92 97 | fvmpt | |- ( ( j + 1 ) e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 99 | 60 98 | syl | |- ( j e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 100 | 95 99 | sseq12d | |- ( j e. NN -> ( ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 101 | 100 | ralbiia | |- ( A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> A. j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 102 | 55 70 | sseq12d | |- ( n = j -> ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) <-> ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
| 103 | 102 | cbvralvw | |- ( A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) <-> A. j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
| 104 | 101 103 | bitr4i | |- ( A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
| 105 | 91 104 | sylibr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) ) |
| 106 | volsup | |- ( ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol /\ A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) ) -> ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
|
| 107 | 90 105 106 | syl2anc | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
| 108 | 95 | iuneq2i | |- U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U_ j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) |
| 109 | 55 | cbviunv | |- U_ n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) = U_ j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) |
| 110 | iunin2 | |- U_ n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) |
|
| 111 | 108 109 110 | 3eqtr2i | |- U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) |
| 112 | ffn | |- ( A : NN --> dom vol -> A Fn NN ) |
|
| 113 | fniunfv | |- ( A Fn NN -> U_ n e. NN ( A ` n ) = U. ran A ) |
|
| 114 | 1 112 113 | 3syl | |- ( ph -> U_ n e. NN ( A ` n ) = U. ran A ) |
| 115 | 114 3 | eqtrd | |- ( ph -> U_ n e. NN ( A ` n ) = RR ) |
| 116 | 115 | adantr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ n e. NN ( A ` n ) = RR ) |
| 117 | 116 | ineq2d | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) = ( ( `' F " { k } ) i^i RR ) ) |
| 118 | 15 | adantr | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) e. dom vol ) |
| 119 | 118 25 | syl | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ RR ) |
| 120 | dfss2 | |- ( ( `' F " { k } ) C_ RR <-> ( ( `' F " { k } ) i^i RR ) = ( `' F " { k } ) ) |
|
| 121 | 119 120 | sylib | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i RR ) = ( `' F " { k } ) ) |
| 122 | 117 121 | eqtrd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) = ( `' F " { k } ) ) |
| 123 | 111 122 | eqtrid | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( `' F " { k } ) ) |
| 124 | ffn | |- ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol -> ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) Fn NN ) |
|
| 125 | fniunfv | |- ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) Fn NN -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
|
| 126 | 90 124 125 | 3syl | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 127 | 123 126 | eqtr3d | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 128 | 127 | fveq2d | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 129 | 36 | frnd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) C_ RR ) |
| 130 | 36 | fdmd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = NN ) |
| 131 | 1nn | |- 1 e. NN |
|
| 132 | ne0i | |- ( 1 e. NN -> NN =/= (/) ) |
|
| 133 | 131 132 | mp1i | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> NN =/= (/) ) |
| 134 | 130 133 | eqnetrd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
| 135 | dm0rn0 | |- ( dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = (/) <-> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = (/) ) |
|
| 136 | 135 | necon3bii | |- ( dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) <-> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
| 137 | 134 136 | sylib | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
| 138 | ffn | |- ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) : NN --> RR -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) Fn NN ) |
|
| 139 | breq1 | |- ( z = ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) -> ( z <_ x <-> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
|
| 140 | 139 | ralrn | |- ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
| 141 | 36 138 140 | 3syl | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
| 142 | 141 | rexbidv | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
| 143 | 88 142 | mpbird | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x ) |
| 144 | supxrre | |- ( ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) C_ RR /\ ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) /\ E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
|
| 145 | 129 137 143 144 | syl3anc | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
| 146 | volf | |- vol : dom vol --> ( 0 [,] +oo ) |
|
| 147 | 146 | a1i | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> vol : dom vol --> ( 0 [,] +oo ) ) |
| 148 | 147 20 | cofmpt | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 149 | 148 | rneqd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 150 | rnco2 | |- ran ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
|
| 151 | 149 150 | eqtr3di | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 152 | 151 | supeq1d | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
| 153 | 145 152 | eqtr3d | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
| 154 | 107 128 153 | 3eqtr4d | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
| 155 | 89 154 | breqtrrd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ~~> ( vol ` ( `' F " { k } ) ) ) |
| 156 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 157 | frn | |- ( F : RR --> RR -> ran F C_ RR ) |
|
| 158 | 4 156 157 | 3syl | |- ( ph -> ran F C_ RR ) |
| 159 | 158 | ssdifssd | |- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
| 160 | 159 | sselda | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
| 161 | 160 | recnd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
| 162 | nnex | |- NN e. _V |
|
| 163 | 162 | mptex | |- ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) e. _V |
| 164 | 163 | a1i | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) e. _V ) |
| 165 | 36 | ffvelcdmda | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) e. RR ) |
| 166 | 165 | recnd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) e. CC ) |
| 167 | 56 | oveq2d | |- ( n = j -> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 168 | eqid | |- ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) = ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
|
| 169 | ovex | |- ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) e. _V |
|
| 170 | 167 168 169 | fvmpt | |- ( j e. NN -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 171 | 59 | oveq2d | |- ( j e. NN -> ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 172 | 170 171 | eqtr4d | |- ( j e. NN -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) ) |
| 173 | 172 | adantl | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) ) |
| 174 | 6 13 155 161 164 166 173 | climmulc2 | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ~~> ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 175 | 162 | mptex | |- ( n e. NN |-> ( S.1 ` G ) ) e. _V |
| 176 | 175 | a1i | |- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) e. _V ) |
| 177 | 160 | adantr | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> k e. RR ) |
| 178 | 177 35 | remulcld | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) e. RR ) |
| 179 | 178 | fmpttd | |- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) : NN --> RR ) |
| 180 | 179 | ffvelcdmda | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. RR ) |
| 181 | 180 | recnd | |- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. CC ) |
| 182 | 181 | anasss | |- ( ( ph /\ ( k e. ( ran F \ { 0 } ) /\ j e. NN ) ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. CC ) |
| 183 | 4 | adantr | |- ( ( ph /\ n e. NN ) -> F e. dom S.1 ) |
| 184 | 5 | i1fres | |- ( ( F e. dom S.1 /\ ( A ` n ) e. dom vol ) -> G e. dom S.1 ) |
| 185 | 183 17 184 | syl2anc | |- ( ( ph /\ n e. NN ) -> G e. dom S.1 ) |
| 186 | 12 | adantr | |- ( ( ph /\ n e. NN ) -> ( ran F \ { 0 } ) e. Fin ) |
| 187 | ffn | |- ( F : RR --> RR -> F Fn RR ) |
|
| 188 | 4 156 187 | 3syl | |- ( ph -> F Fn RR ) |
| 189 | 188 | adantr | |- ( ( ph /\ n e. NN ) -> F Fn RR ) |
| 190 | fnfvelrn | |- ( ( F Fn RR /\ x e. RR ) -> ( F ` x ) e. ran F ) |
|
| 191 | 189 190 | sylan | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. ran F ) |
| 192 | i1f0rn | |- ( F e. dom S.1 -> 0 e. ran F ) |
|
| 193 | 4 192 | syl | |- ( ph -> 0 e. ran F ) |
| 194 | 193 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 e. ran F ) |
| 195 | 191 194 | ifcld | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. ran F ) |
| 196 | 195 5 | fmptd | |- ( ( ph /\ n e. NN ) -> G : RR --> ran F ) |
| 197 | frn | |- ( G : RR --> ran F -> ran G C_ ran F ) |
|
| 198 | ssdif | |- ( ran G C_ ran F -> ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) ) |
|
| 199 | 196 197 198 | 3syl | |- ( ( ph /\ n e. NN ) -> ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) ) |
| 200 | 158 | adantr | |- ( ( ph /\ n e. NN ) -> ran F C_ RR ) |
| 201 | 200 | ssdifd | |- ( ( ph /\ n e. NN ) -> ( ran F \ { 0 } ) C_ ( RR \ { 0 } ) ) |
| 202 | itg1val2 | |- ( ( G e. dom S.1 /\ ( ( ran F \ { 0 } ) e. Fin /\ ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) /\ ( ran F \ { 0 } ) C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) ) |
|
| 203 | 185 186 199 201 202 | syl13anc | |- ( ( ph /\ n e. NN ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) ) |
| 204 | fvex | |- ( F ` x ) e. _V |
|
| 205 | c0ex | |- 0 e. _V |
|
| 206 | 204 205 | ifex | |- if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. _V |
| 207 | 5 | fvmpt2 | |- ( ( x e. RR /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. _V ) -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
| 208 | 206 207 | mpan2 | |- ( x e. RR -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
| 209 | 208 | adantl | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
| 210 | 209 | eqeq1d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) |
| 211 | eldifsni | |- ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) |
|
| 212 | 211 | ad2antlr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> k =/= 0 ) |
| 213 | neeq1 | |- ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 <-> k =/= 0 ) ) |
|
| 214 | 212 213 | syl5ibrcom | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 ) ) |
| 215 | iffalse | |- ( -. x e. ( A ` n ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = 0 ) |
|
| 216 | 215 | necon1ai | |- ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 -> x e. ( A ` n ) ) |
| 217 | 214 216 | syl6 | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> x e. ( A ` n ) ) ) |
| 218 | 217 | pm4.71rd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k <-> ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) ) |
| 219 | 210 218 | bitrd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) ) |
| 220 | iftrue | |- ( x e. ( A ` n ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = ( F ` x ) ) |
|
| 221 | 220 | eqeq1d | |- ( x e. ( A ` n ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k <-> ( F ` x ) = k ) ) |
| 222 | 221 | pm5.32i | |- ( ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) <-> ( x e. ( A ` n ) /\ ( F ` x ) = k ) ) |
| 223 | 222 | biancomi | |- ( ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) <-> ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) |
| 224 | 219 223 | bitrdi | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) |
| 225 | 224 | pm5.32da | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( G ` x ) = k ) <-> ( x e. RR /\ ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) ) |
| 226 | anass | |- ( ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) <-> ( x e. RR /\ ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) |
|
| 227 | 225 226 | bitr4di | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( G ` x ) = k ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
| 228 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 229 | ffn | |- ( G : RR --> RR -> G Fn RR ) |
|
| 230 | 185 228 229 | 3syl | |- ( ( ph /\ n e. NN ) -> G Fn RR ) |
| 231 | 230 | adantr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> G Fn RR ) |
| 232 | fniniseg | |- ( G Fn RR -> ( x e. ( `' G " { k } ) <-> ( x e. RR /\ ( G ` x ) = k ) ) ) |
|
| 233 | 231 232 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' G " { k } ) <-> ( x e. RR /\ ( G ` x ) = k ) ) ) |
| 234 | elin | |- ( x e. ( ( `' F " { k } ) i^i ( A ` n ) ) <-> ( x e. ( `' F " { k } ) /\ x e. ( A ` n ) ) ) |
|
| 235 | 189 | adantr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> F Fn RR ) |
| 236 | fniniseg | |- ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
|
| 237 | 235 236 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 238 | 237 | anbi1d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. ( `' F " { k } ) /\ x e. ( A ` n ) ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
| 239 | 234 238 | bitrid | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( ( `' F " { k } ) i^i ( A ` n ) ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
| 240 | 227 233 239 | 3bitr4d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 241 | 240 | alrimiv | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> A. x ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 242 | nfmpt1 | |- F/_ x ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
|
| 243 | 5 242 | nfcxfr | |- F/_ x G |
| 244 | 243 | nfcnv | |- F/_ x `' G |
| 245 | nfcv | |- F/_ x { k } |
|
| 246 | 244 245 | nfima | |- F/_ x ( `' G " { k } ) |
| 247 | nfcv | |- F/_ x ( ( `' F " { k } ) i^i ( A ` n ) ) |
|
| 248 | 246 247 | cleqf | |- ( ( `' G " { k } ) = ( ( `' F " { k } ) i^i ( A ` n ) ) <-> A. x ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 249 | 241 248 | sylibr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( `' G " { k } ) = ( ( `' F " { k } ) i^i ( A ` n ) ) ) |
| 250 | 249 | fveq2d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' G " { k } ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
| 251 | 250 | oveq2d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' G " { k } ) ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 252 | 251 | sumeq2dv | |- ( ( ph /\ n e. NN ) -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 253 | 203 252 | eqtrd | |- ( ( ph /\ n e. NN ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
| 254 | 253 | mpteq2dva | |- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) = ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ) |
| 255 | 254 | fveq1d | |- ( ph -> ( ( n e. NN |-> ( S.1 ` G ) ) ` j ) = ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
| 256 | 167 | sumeq2sdv | |- ( n = j -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 257 | eqid | |- ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) = ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
|
| 258 | sumex | |- sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) e. _V |
|
| 259 | 256 257 258 | fvmpt | |- ( j e. NN -> ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 260 | 170 | sumeq2sdv | |- ( j e. NN -> sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
| 261 | 259 260 | eqtr4d | |- ( j e. NN -> ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
| 262 | 255 261 | sylan9eq | |- ( ( ph /\ j e. NN ) -> ( ( n e. NN |-> ( S.1 ` G ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
| 263 | 6 7 12 174 176 182 262 | climfsum | |- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 264 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
|
| 265 | 4 264 | syl | |- ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 266 | 263 265 | breqtrrd | |- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> ( S.1 ` F ) ) |