This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrub | |- ( ( A C_ RR* /\ B e. A ) -> B <_ sup ( A , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 | |- ( ( A C_ RR* /\ B e. A ) -> B e. RR* ) |
|
| 2 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 3 | 2 | adantr | |- ( ( A C_ RR* /\ B e. A ) -> sup ( A , RR* , < ) e. RR* ) |
| 4 | xrltso | |- < Or RR* |
|
| 5 | 4 | a1i | |- ( A C_ RR* -> < Or RR* ) |
| 6 | xrsupss | |- ( A C_ RR* -> E. x e. RR* ( A. y e. A -. x < y /\ A. y e. RR* ( y < x -> E. z e. A y < z ) ) ) |
|
| 7 | 5 6 | supub | |- ( A C_ RR* -> ( B e. A -> -. sup ( A , RR* , < ) < B ) ) |
| 8 | 7 | imp | |- ( ( A C_ RR* /\ B e. A ) -> -. sup ( A , RR* , < ) < B ) |
| 9 | 1 3 8 | xrnltled | |- ( ( A C_ RR* /\ B e. A ) -> B <_ sup ( A , RR* , < ) ) |