This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval2.1 | |- ( ph -> A e. V ) |
|
| offval2.2 | |- ( ( ph /\ x e. A ) -> B e. W ) |
||
| offval2.3 | |- ( ( ph /\ x e. A ) -> C e. X ) |
||
| offval2.4 | |- ( ph -> F = ( x e. A |-> B ) ) |
||
| offval2.5 | |- ( ph -> G = ( x e. A |-> C ) ) |
||
| Assertion | offval2 | |- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval2.1 | |- ( ph -> A e. V ) |
|
| 2 | offval2.2 | |- ( ( ph /\ x e. A ) -> B e. W ) |
|
| 3 | offval2.3 | |- ( ( ph /\ x e. A ) -> C e. X ) |
|
| 4 | offval2.4 | |- ( ph -> F = ( x e. A |-> B ) ) |
|
| 5 | offval2.5 | |- ( ph -> G = ( x e. A |-> C ) ) |
|
| 6 | 2 | ralrimiva | |- ( ph -> A. x e. A B e. W ) |
| 7 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 8 | 7 | fnmpt | |- ( A. x e. A B e. W -> ( x e. A |-> B ) Fn A ) |
| 9 | 6 8 | syl | |- ( ph -> ( x e. A |-> B ) Fn A ) |
| 10 | 4 | fneq1d | |- ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) |
| 11 | 9 10 | mpbird | |- ( ph -> F Fn A ) |
| 12 | 3 | ralrimiva | |- ( ph -> A. x e. A C e. X ) |
| 13 | eqid | |- ( x e. A |-> C ) = ( x e. A |-> C ) |
|
| 14 | 13 | fnmpt | |- ( A. x e. A C e. X -> ( x e. A |-> C ) Fn A ) |
| 15 | 12 14 | syl | |- ( ph -> ( x e. A |-> C ) Fn A ) |
| 16 | 5 | fneq1d | |- ( ph -> ( G Fn A <-> ( x e. A |-> C ) Fn A ) ) |
| 17 | 15 16 | mpbird | |- ( ph -> G Fn A ) |
| 18 | inidm | |- ( A i^i A ) = A |
|
| 19 | 4 | adantr | |- ( ( ph /\ y e. A ) -> F = ( x e. A |-> B ) ) |
| 20 | 19 | fveq1d | |- ( ( ph /\ y e. A ) -> ( F ` y ) = ( ( x e. A |-> B ) ` y ) ) |
| 21 | 5 | adantr | |- ( ( ph /\ y e. A ) -> G = ( x e. A |-> C ) ) |
| 22 | 21 | fveq1d | |- ( ( ph /\ y e. A ) -> ( G ` y ) = ( ( x e. A |-> C ) ` y ) ) |
| 23 | 11 17 1 1 18 20 22 | offval | |- ( ph -> ( F oF R G ) = ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) ) |
| 24 | nffvmpt1 | |- F/_ x ( ( x e. A |-> B ) ` y ) |
|
| 25 | nfcv | |- F/_ x R |
|
| 26 | nffvmpt1 | |- F/_ x ( ( x e. A |-> C ) ` y ) |
|
| 27 | 24 25 26 | nfov | |- F/_ x ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) |
| 28 | nfcv | |- F/_ y ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) |
|
| 29 | fveq2 | |- ( y = x -> ( ( x e. A |-> B ) ` y ) = ( ( x e. A |-> B ) ` x ) ) |
|
| 30 | fveq2 | |- ( y = x -> ( ( x e. A |-> C ) ` y ) = ( ( x e. A |-> C ) ` x ) ) |
|
| 31 | 29 30 | oveq12d | |- ( y = x -> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) = ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
| 32 | 27 28 31 | cbvmpt | |- ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
| 33 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 34 | 7 | fvmpt2 | |- ( ( x e. A /\ B e. W ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 35 | 33 2 34 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 36 | 13 | fvmpt2 | |- ( ( x e. A /\ C e. X ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 37 | 33 3 36 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 38 | 35 37 | oveq12d | |- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) = ( B R C ) ) |
| 39 | 38 | mpteq2dva | |- ( ph -> ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) = ( x e. A |-> ( B R C ) ) ) |
| 40 | 32 39 | eqtrid | |- ( ph -> ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( B R C ) ) ) |
| 41 | 23 40 | eqtrd | |- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |