This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law. (Contributed by NM, 12-Nov-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | letr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B <_ C ) -> A <_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe | |- ( ( B e. RR /\ C e. RR ) -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
| 3 | 2 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( B <_ C <-> ( B < C \/ B = C ) ) ) |
| 4 | lelttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |
|
| 5 | ltle | |- ( ( A e. RR /\ C e. RR ) -> ( A < C -> A <_ C ) ) |
|
| 6 | 5 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C -> A <_ C ) ) |
| 7 | 4 6 | syld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A <_ C ) ) |
| 8 | 7 | expdimp | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( B < C -> A <_ C ) ) |
| 9 | breq2 | |- ( B = C -> ( A <_ B <-> A <_ C ) ) |
|
| 10 | 9 | biimpcd | |- ( A <_ B -> ( B = C -> A <_ C ) ) |
| 11 | 10 | adantl | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( B = C -> A <_ C ) ) |
| 12 | 8 11 | jaod | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( ( B < C \/ B = C ) -> A <_ C ) ) |
| 13 | 3 12 | sylbid | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ A <_ B ) -> ( B <_ C -> A <_ C ) ) |
| 14 | 13 | expimpd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B <_ C ) -> A <_ C ) ) |