This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2cl | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| 2 | 1 | itg2val | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) = sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
| 3 | 1 | itg2lcl | |- { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* |
| 4 | supxrcl | |- ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* -> sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) e. RR* ) |
|
| 5 | 3 4 | ax-mp | |- sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) e. RR* |
| 6 | 2 5 | eqeltrdi | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |