This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
| climadd.2 | |- ( ph -> M e. ZZ ) |
||
| climadd.4 | |- ( ph -> F ~~> A ) |
||
| climle.5 | |- ( ph -> G ~~> B ) |
||
| climle.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| climle.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
||
| climle.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
||
| Assertion | climle | |- ( ph -> A <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climadd.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climadd.4 | |- ( ph -> F ~~> A ) |
|
| 4 | climle.5 | |- ( ph -> G ~~> B ) |
|
| 5 | climle.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 6 | climle.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
|
| 7 | climle.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
|
| 8 | 1 | fvexi | |- Z e. _V |
| 9 | 8 | mptex | |- ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) e. _V |
| 10 | 9 | a1i | |- ( ph -> ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) e. _V ) |
| 11 | 6 | recnd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 12 | 5 | recnd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 13 | fveq2 | |- ( j = k -> ( G ` j ) = ( G ` k ) ) |
|
| 14 | fveq2 | |- ( j = k -> ( F ` j ) = ( F ` k ) ) |
|
| 15 | 13 14 | oveq12d | |- ( j = k -> ( ( G ` j ) - ( F ` j ) ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 16 | eqid | |- ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) = ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) |
|
| 17 | ovex | |- ( ( G ` k ) - ( F ` k ) ) e. _V |
|
| 18 | 15 16 17 | fvmpt | |- ( k e. Z -> ( ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 19 | 18 | adantl | |- ( ( ph /\ k e. Z ) -> ( ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) ` k ) = ( ( G ` k ) - ( F ` k ) ) ) |
| 20 | 1 2 4 10 3 11 12 19 | climsub | |- ( ph -> ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) ~~> ( B - A ) ) |
| 21 | 6 5 | resubcld | |- ( ( ph /\ k e. Z ) -> ( ( G ` k ) - ( F ` k ) ) e. RR ) |
| 22 | 19 21 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) ` k ) e. RR ) |
| 23 | 6 5 | subge0d | |- ( ( ph /\ k e. Z ) -> ( 0 <_ ( ( G ` k ) - ( F ` k ) ) <-> ( F ` k ) <_ ( G ` k ) ) ) |
| 24 | 7 23 | mpbird | |- ( ( ph /\ k e. Z ) -> 0 <_ ( ( G ` k ) - ( F ` k ) ) ) |
| 25 | 24 19 | breqtrrd | |- ( ( ph /\ k e. Z ) -> 0 <_ ( ( j e. Z |-> ( ( G ` j ) - ( F ` j ) ) ) ` k ) ) |
| 26 | 1 2 20 22 25 | climge0 | |- ( ph -> 0 <_ ( B - A ) ) |
| 27 | 1 2 4 6 | climrecl | |- ( ph -> B e. RR ) |
| 28 | 1 2 3 5 | climrecl | |- ( ph -> A e. RR ) |
| 29 | 27 28 | subge0d | |- ( ph -> ( 0 <_ ( B - A ) <-> A <_ B ) ) |
| 30 | 26 29 | mpbid | |- ( ph -> A <_ B ) |