This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fmulc.2 | |- ( ph -> F e. dom S.1 ) |
|
| i1fmulc.3 | |- ( ph -> A e. RR ) |
||
| Assertion | itg1mulc | |- ( ph -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fmulc.2 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fmulc.3 | |- ( ph -> A e. RR ) |
|
| 3 | itg10 | |- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
|
| 4 | reex | |- RR e. _V |
|
| 5 | 4 | a1i | |- ( ( ph /\ A = 0 ) -> RR e. _V ) |
| 6 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 7 | 1 6 | syl | |- ( ph -> F : RR --> RR ) |
| 8 | 7 | adantr | |- ( ( ph /\ A = 0 ) -> F : RR --> RR ) |
| 9 | 2 | adantr | |- ( ( ph /\ A = 0 ) -> A e. RR ) |
| 10 | 0red | |- ( ( ph /\ A = 0 ) -> 0 e. RR ) |
|
| 11 | simplr | |- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> A = 0 ) |
|
| 12 | 11 | oveq1d | |- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = ( 0 x. x ) ) |
| 13 | mul02lem2 | |- ( x e. RR -> ( 0 x. x ) = 0 ) |
|
| 14 | 13 | adantl | |- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
| 15 | 12 14 | eqtrd | |- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = 0 ) |
| 16 | 5 8 9 10 15 | caofid2 | |- ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) ) |
| 17 | 16 | fveq2d | |- ( ( ph /\ A = 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( S.1 ` ( RR X. { 0 } ) ) ) |
| 18 | simpr | |- ( ( ph /\ A = 0 ) -> A = 0 ) |
|
| 19 | 18 | oveq1d | |- ( ( ph /\ A = 0 ) -> ( A x. ( S.1 ` F ) ) = ( 0 x. ( S.1 ` F ) ) ) |
| 20 | itg1cl | |- ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) |
|
| 21 | 1 20 | syl | |- ( ph -> ( S.1 ` F ) e. RR ) |
| 22 | 21 | recnd | |- ( ph -> ( S.1 ` F ) e. CC ) |
| 23 | 22 | mul02d | |- ( ph -> ( 0 x. ( S.1 ` F ) ) = 0 ) |
| 24 | 23 | adantr | |- ( ( ph /\ A = 0 ) -> ( 0 x. ( S.1 ` F ) ) = 0 ) |
| 25 | 19 24 | eqtrd | |- ( ( ph /\ A = 0 ) -> ( A x. ( S.1 ` F ) ) = 0 ) |
| 26 | 3 17 25 | 3eqtr4a | |- ( ( ph /\ A = 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |
| 27 | 1 2 | i1fmulc | |- ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| 28 | 27 | adantr | |- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| 29 | i1ff | |- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
|
| 30 | 28 29 | syl | |- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 31 | 30 | frnd | |- ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) C_ RR ) |
| 32 | 31 | ssdifssd | |- ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR ) |
| 33 | 32 | sselda | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m e. RR ) |
| 34 | 33 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m e. CC ) |
| 35 | 2 | adantr | |- ( ( ph /\ A =/= 0 ) -> A e. RR ) |
| 36 | 35 | recnd | |- ( ( ph /\ A =/= 0 ) -> A e. CC ) |
| 37 | 36 | adantr | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
| 38 | simplr | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 ) |
|
| 39 | 34 37 38 | divcan2d | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( A x. ( m / A ) ) = m ) |
| 40 | 1 2 | i1fmulclem | |- ( ( ( ph /\ A =/= 0 ) /\ m e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) = ( `' F " { ( m / A ) } ) ) |
| 41 | 33 40 | syldan | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) = ( `' F " { ( m / A ) } ) ) |
| 42 | 41 | fveq2d | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) = ( vol ` ( `' F " { ( m / A ) } ) ) ) |
| 43 | 42 | eqcomd | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) = ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) |
| 44 | 39 43 | oveq12d | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( A x. ( m / A ) ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) = ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
| 45 | 2 | ad2antrr | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. RR ) |
| 46 | 33 45 38 | redivcld | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. RR ) |
| 47 | 46 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. CC ) |
| 48 | 1 | ad2antrr | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> F e. dom S.1 ) |
| 49 | 45 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
| 50 | eldifsni | |- ( m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> m =/= 0 ) |
|
| 51 | 50 | adantl | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m =/= 0 ) |
| 52 | 34 49 51 38 | divne0d | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) =/= 0 ) |
| 53 | eldifsn | |- ( ( m / A ) e. ( RR \ { 0 } ) <-> ( ( m / A ) e. RR /\ ( m / A ) =/= 0 ) ) |
|
| 54 | 46 52 53 | sylanbrc | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. ( RR \ { 0 } ) ) |
| 55 | i1fima2sn | |- ( ( F e. dom S.1 /\ ( m / A ) e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. RR ) |
|
| 56 | 48 54 55 | syl2anc | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. RR ) |
| 57 | 56 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. CC ) |
| 58 | 37 47 57 | mulassd | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( A x. ( m / A ) ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) = ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 59 | 44 58 | eqtr3d | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 60 | 59 | sumeq2dv | |- ( ( ph /\ A =/= 0 ) -> sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 61 | i1frn | |- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
|
| 62 | 28 61 | syl | |- ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
| 63 | difss | |- ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ ran ( ( RR X. { A } ) oF x. F ) |
|
| 64 | ssfi | |- ( ( ran ( ( RR X. { A } ) oF x. F ) e. Fin /\ ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ ran ( ( RR X. { A } ) oF x. F ) ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) e. Fin ) |
|
| 65 | 62 63 64 | sylancl | |- ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) e. Fin ) |
| 66 | 47 57 | mulcld | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) e. CC ) |
| 67 | 65 36 66 | fsummulc2 | |- ( ( ph /\ A =/= 0 ) -> ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 68 | 60 67 | eqtr4d | |- ( ( ph /\ A =/= 0 ) -> sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 69 | itg1val | |- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
|
| 70 | 28 69 | syl | |- ( ( ph /\ A =/= 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
| 71 | 1 | adantr | |- ( ( ph /\ A =/= 0 ) -> F e. dom S.1 ) |
| 72 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
|
| 73 | 71 72 | syl | |- ( ( ph /\ A =/= 0 ) -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 74 | id | |- ( k = ( m / A ) -> k = ( m / A ) ) |
|
| 75 | sneq | |- ( k = ( m / A ) -> { k } = { ( m / A ) } ) |
|
| 76 | 75 | imaeq2d | |- ( k = ( m / A ) -> ( `' F " { k } ) = ( `' F " { ( m / A ) } ) ) |
| 77 | 76 | fveq2d | |- ( k = ( m / A ) -> ( vol ` ( `' F " { k } ) ) = ( vol ` ( `' F " { ( m / A ) } ) ) ) |
| 78 | 74 77 | oveq12d | |- ( k = ( m / A ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
| 79 | eqid | |- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) = ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) |
|
| 80 | eldifi | |- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> n e. ran ( ( RR X. { A } ) oF x. F ) ) |
|
| 81 | 4 | a1i | |- ( ph -> RR e. _V ) |
| 82 | 7 | ffnd | |- ( ph -> F Fn RR ) |
| 83 | eqidd | |- ( ( ph /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
|
| 84 | 81 2 82 83 | ofc1 | |- ( ( ph /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) = ( A x. ( F ` y ) ) ) |
| 85 | 84 | adantlr | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) = ( A x. ( F ` y ) ) ) |
| 86 | 85 | oveq1d | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) = ( ( A x. ( F ` y ) ) / A ) ) |
| 87 | 7 | adantr | |- ( ( ph /\ A =/= 0 ) -> F : RR --> RR ) |
| 88 | 87 | ffvelcdmda | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. RR ) |
| 89 | 88 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. CC ) |
| 90 | 36 | adantr | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> A e. CC ) |
| 91 | simplr | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> A =/= 0 ) |
|
| 92 | 89 90 91 | divcan3d | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( A x. ( F ` y ) ) / A ) = ( F ` y ) ) |
| 93 | 86 92 | eqtrd | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) = ( F ` y ) ) |
| 94 | 87 | ffnd | |- ( ( ph /\ A =/= 0 ) -> F Fn RR ) |
| 95 | fnfvelrn | |- ( ( F Fn RR /\ y e. RR ) -> ( F ` y ) e. ran F ) |
|
| 96 | 94 95 | sylan | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. ran F ) |
| 97 | 93 96 | eqeltrd | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) |
| 98 | 97 | ralrimiva | |- ( ( ph /\ A =/= 0 ) -> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) |
| 99 | 30 | ffnd | |- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) Fn RR ) |
| 100 | oveq1 | |- ( n = ( ( ( RR X. { A } ) oF x. F ) ` y ) -> ( n / A ) = ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) ) |
|
| 101 | 100 | eleq1d | |- ( n = ( ( ( RR X. { A } ) oF x. F ) ` y ) -> ( ( n / A ) e. ran F <-> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
| 102 | 101 | ralrn | |- ( ( ( RR X. { A } ) oF x. F ) Fn RR -> ( A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F <-> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
| 103 | 99 102 | syl | |- ( ( ph /\ A =/= 0 ) -> ( A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F <-> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
| 104 | 98 103 | mpbird | |- ( ( ph /\ A =/= 0 ) -> A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F ) |
| 105 | 104 | r19.21bi | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ran ( ( RR X. { A } ) oF x. F ) ) -> ( n / A ) e. ran F ) |
| 106 | 80 105 | sylan2 | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) e. ran F ) |
| 107 | 32 | sselda | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. RR ) |
| 108 | 107 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. CC ) |
| 109 | 36 | adantr | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
| 110 | eldifsni | |- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> n =/= 0 ) |
|
| 111 | 110 | adantl | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n =/= 0 ) |
| 112 | simplr | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 ) |
|
| 113 | 108 109 111 112 | divne0d | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) =/= 0 ) |
| 114 | eldifsn | |- ( ( n / A ) e. ( ran F \ { 0 } ) <-> ( ( n / A ) e. ran F /\ ( n / A ) =/= 0 ) ) |
|
| 115 | 106 113 114 | sylanbrc | |- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) e. ( ran F \ { 0 } ) ) |
| 116 | eldifi | |- ( k e. ( ran F \ { 0 } ) -> k e. ran F ) |
|
| 117 | fnfvelrn | |- ( ( ( ( RR X. { A } ) oF x. F ) Fn RR /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
|
| 118 | 99 117 | sylan | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 119 | 85 118 | eqeltrrd | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 120 | 119 | ralrimiva | |- ( ( ph /\ A =/= 0 ) -> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 121 | oveq2 | |- ( k = ( F ` y ) -> ( A x. k ) = ( A x. ( F ` y ) ) ) |
|
| 122 | 121 | eleq1d | |- ( k = ( F ` y ) -> ( ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
| 123 | 122 | ralrn | |- ( F Fn RR -> ( A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
| 124 | 94 123 | syl | |- ( ( ph /\ A =/= 0 ) -> ( A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
| 125 | 120 124 | mpbird | |- ( ( ph /\ A =/= 0 ) -> A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 126 | 125 | r19.21bi | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ran F ) -> ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 127 | 116 126 | sylan2 | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 128 | 36 | adantr | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> A e. CC ) |
| 129 | 87 | frnd | |- ( ( ph /\ A =/= 0 ) -> ran F C_ RR ) |
| 130 | 129 | ssdifssd | |- ( ( ph /\ A =/= 0 ) -> ( ran F \ { 0 } ) C_ RR ) |
| 131 | 130 | sselda | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
| 132 | 131 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
| 133 | simplr | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> A =/= 0 ) |
|
| 134 | eldifsni | |- ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) |
|
| 135 | 134 | adantl | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k =/= 0 ) |
| 136 | 128 132 133 135 | mulne0d | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) =/= 0 ) |
| 137 | eldifsn | |- ( ( A x. k ) e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) <-> ( ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) /\ ( A x. k ) =/= 0 ) ) |
|
| 138 | 127 136 137 | sylanbrc | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) |
| 139 | simpl | |- ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) -> n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) |
|
| 140 | ssel2 | |- ( ( ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. RR ) |
|
| 141 | 32 139 140 | syl2an | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> n e. RR ) |
| 142 | 141 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> n e. CC ) |
| 143 | 2 | ad2antrr | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A e. RR ) |
| 144 | 143 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A e. CC ) |
| 145 | 131 | adantrl | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> k e. RR ) |
| 146 | 145 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> k e. CC ) |
| 147 | simplr | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A =/= 0 ) |
|
| 148 | 142 144 146 147 | divmuld | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( ( n / A ) = k <-> ( A x. k ) = n ) ) |
| 149 | 148 | bicomd | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( ( A x. k ) = n <-> ( n / A ) = k ) ) |
| 150 | eqcom | |- ( n = ( A x. k ) <-> ( A x. k ) = n ) |
|
| 151 | eqcom | |- ( k = ( n / A ) <-> ( n / A ) = k ) |
|
| 152 | 149 150 151 | 3bitr4g | |- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( n = ( A x. k ) <-> k = ( n / A ) ) ) |
| 153 | 79 115 138 152 | f1o2d | |- ( ( ph /\ A =/= 0 ) -> ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) : ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -1-1-onto-> ( ran F \ { 0 } ) ) |
| 154 | oveq1 | |- ( n = m -> ( n / A ) = ( m / A ) ) |
|
| 155 | ovex | |- ( m / A ) e. _V |
|
| 156 | 154 79 155 | fvmpt | |- ( m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) ` m ) = ( m / A ) ) |
| 157 | 156 | adantl | |- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) ` m ) = ( m / A ) ) |
| 158 | i1fima2sn | |- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
|
| 159 | 71 158 | sylan | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 160 | 131 159 | remulcld | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. RR ) |
| 161 | 160 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. CC ) |
| 162 | 78 65 153 157 161 | fsumf1o | |- ( ( ph /\ A =/= 0 ) -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
| 163 | 73 162 | eqtrd | |- ( ( ph /\ A =/= 0 ) -> ( S.1 ` F ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
| 164 | 163 | oveq2d | |- ( ( ph /\ A =/= 0 ) -> ( A x. ( S.1 ` F ) ) = ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 165 | 68 70 164 | 3eqtr4d | |- ( ( ph /\ A =/= 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |
| 166 | 26 165 | pm2.61dane | |- ( ph -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |