This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1cl | |- ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
|
| 2 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 3 | difss | |- ( ran F \ { 0 } ) C_ ran F |
|
| 4 | ssfi | |- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
|
| 5 | 2 3 4 | sylancl | |- ( F e. dom S.1 -> ( ran F \ { 0 } ) e. Fin ) |
| 6 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 7 | 6 | frnd | |- ( F e. dom S.1 -> ran F C_ RR ) |
| 8 | 7 | ssdifssd | |- ( F e. dom S.1 -> ( ran F \ { 0 } ) C_ RR ) |
| 9 | 8 | sselda | |- ( ( F e. dom S.1 /\ x e. ( ran F \ { 0 } ) ) -> x e. RR ) |
| 10 | i1fima2sn | |- ( ( F e. dom S.1 /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
|
| 11 | 9 10 | remulcld | |- ( ( F e. dom S.1 /\ x e. ( ran F \ { 0 } ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. RR ) |
| 12 | 5 11 | fsumrecl | |- ( F e. dom S.1 -> sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) e. RR ) |
| 13 | 1 12 | eqeltrd | |- ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) |