This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rnmpt.1 | |- F = ( x e. A |-> B ) |
|
| Assertion | rnmpt | |- ran F = { y | E. x e. A y = B } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt.1 | |- F = ( x e. A |-> B ) |
|
| 2 | rnopab | |- ran { <. x , y >. | ( x e. A /\ y = B ) } = { y | E. x ( x e. A /\ y = B ) } |
|
| 3 | df-mpt | |- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
|
| 4 | 1 3 | eqtri | |- F = { <. x , y >. | ( x e. A /\ y = B ) } |
| 5 | 4 | rneqi | |- ran F = ran { <. x , y >. | ( x e. A /\ y = B ) } |
| 6 | df-rex | |- ( E. x e. A y = B <-> E. x ( x e. A /\ y = B ) ) |
|
| 7 | 6 | abbii | |- { y | E. x e. A y = B } = { y | E. x ( x e. A /\ y = B ) } |
| 8 | 2 5 7 | 3eqtr4i | |- ran F = { y | E. x e. A y = B } |