This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | off.1 | |- ( ( ph /\ ( x e. S /\ y e. T ) ) -> ( x R y ) e. U ) |
|
| off.2 | |- ( ph -> F : A --> S ) |
||
| off.3 | |- ( ph -> G : B --> T ) |
||
| off.4 | |- ( ph -> A e. V ) |
||
| off.5 | |- ( ph -> B e. W ) |
||
| off.6 | |- ( A i^i B ) = C |
||
| Assertion | off | |- ( ph -> ( F oF R G ) : C --> U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.1 | |- ( ( ph /\ ( x e. S /\ y e. T ) ) -> ( x R y ) e. U ) |
|
| 2 | off.2 | |- ( ph -> F : A --> S ) |
|
| 3 | off.3 | |- ( ph -> G : B --> T ) |
|
| 4 | off.4 | |- ( ph -> A e. V ) |
|
| 5 | off.5 | |- ( ph -> B e. W ) |
|
| 6 | off.6 | |- ( A i^i B ) = C |
|
| 7 | 2 | ffnd | |- ( ph -> F Fn A ) |
| 8 | 3 | ffnd | |- ( ph -> G Fn B ) |
| 9 | eqidd | |- ( ( ph /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) |
|
| 10 | eqidd | |- ( ( ph /\ z e. B ) -> ( G ` z ) = ( G ` z ) ) |
|
| 11 | 7 8 4 5 6 9 10 | offval | |- ( ph -> ( F oF R G ) = ( z e. C |-> ( ( F ` z ) R ( G ` z ) ) ) ) |
| 12 | inss1 | |- ( A i^i B ) C_ A |
|
| 13 | 6 12 | eqsstrri | |- C C_ A |
| 14 | 13 | sseli | |- ( z e. C -> z e. A ) |
| 15 | ffvelcdm | |- ( ( F : A --> S /\ z e. A ) -> ( F ` z ) e. S ) |
|
| 16 | 2 14 15 | syl2an | |- ( ( ph /\ z e. C ) -> ( F ` z ) e. S ) |
| 17 | inss2 | |- ( A i^i B ) C_ B |
|
| 18 | 6 17 | eqsstrri | |- C C_ B |
| 19 | 18 | sseli | |- ( z e. C -> z e. B ) |
| 20 | ffvelcdm | |- ( ( G : B --> T /\ z e. B ) -> ( G ` z ) e. T ) |
|
| 21 | 3 19 20 | syl2an | |- ( ( ph /\ z e. C ) -> ( G ` z ) e. T ) |
| 22 | 1 | ralrimivva | |- ( ph -> A. x e. S A. y e. T ( x R y ) e. U ) |
| 23 | 22 | adantr | |- ( ( ph /\ z e. C ) -> A. x e. S A. y e. T ( x R y ) e. U ) |
| 24 | ovrspc2v | |- ( ( ( ( F ` z ) e. S /\ ( G ` z ) e. T ) /\ A. x e. S A. y e. T ( x R y ) e. U ) -> ( ( F ` z ) R ( G ` z ) ) e. U ) |
|
| 25 | 16 21 23 24 | syl21anc | |- ( ( ph /\ z e. C ) -> ( ( F ` z ) R ( G ` z ) ) e. U ) |
| 26 | 11 25 | fmpt3d | |- ( ph -> ( F oF R G ) : C --> U ) |