This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2le | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( S.2 ` F ) <_ ( S.2 ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | |- RR e. _V |
|
| 2 | 1 | a1i | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> RR e. _V ) |
| 3 | i1ff | |- ( h e. dom S.1 -> h : RR --> RR ) |
|
| 4 | 3 | adantl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> h : RR --> RR ) |
| 5 | ressxr | |- RR C_ RR* |
|
| 6 | fss | |- ( ( h : RR --> RR /\ RR C_ RR* ) -> h : RR --> RR* ) |
|
| 7 | 4 5 6 | sylancl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> h : RR --> RR* ) |
| 8 | simpll | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> F : RR --> ( 0 [,] +oo ) ) |
|
| 9 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 10 | fss | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( 0 [,] +oo ) C_ RR* ) -> F : RR --> RR* ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> F : RR --> RR* ) |
| 12 | simplr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> G : RR --> ( 0 [,] +oo ) ) |
|
| 13 | fss | |- ( ( G : RR --> ( 0 [,] +oo ) /\ ( 0 [,] +oo ) C_ RR* ) -> G : RR --> RR* ) |
|
| 14 | 12 9 13 | sylancl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> G : RR --> RR* ) |
| 15 | xrletr | |- ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( x <_ y /\ y <_ z ) -> x <_ z ) ) |
|
| 16 | 15 | adantl | |- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) /\ ( x e. RR* /\ y e. RR* /\ z e. RR* ) ) -> ( ( x <_ y /\ y <_ z ) -> x <_ z ) ) |
| 17 | 2 7 11 14 16 | caoftrn | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> ( ( h oR <_ F /\ F oR <_ G ) -> h oR <_ G ) ) |
| 18 | simplr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ ( h e. dom S.1 /\ h oR <_ G ) ) -> G : RR --> ( 0 [,] +oo ) ) |
|
| 19 | simprl | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ ( h e. dom S.1 /\ h oR <_ G ) ) -> h e. dom S.1 ) |
|
| 20 | simprr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ ( h e. dom S.1 /\ h oR <_ G ) ) -> h oR <_ G ) |
|
| 21 | itg2ub | |- ( ( G : RR --> ( 0 [,] +oo ) /\ h e. dom S.1 /\ h oR <_ G ) -> ( S.1 ` h ) <_ ( S.2 ` G ) ) |
|
| 22 | 18 19 20 21 | syl3anc | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ ( h e. dom S.1 /\ h oR <_ G ) ) -> ( S.1 ` h ) <_ ( S.2 ` G ) ) |
| 23 | 22 | expr | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> ( h oR <_ G -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) |
| 24 | 17 23 | syld | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> ( ( h oR <_ F /\ F oR <_ G ) -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) |
| 25 | 24 | ancomsd | |- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> ( ( F oR <_ G /\ h oR <_ F ) -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) |
| 26 | 25 | exp4b | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) -> ( h e. dom S.1 -> ( F oR <_ G -> ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) ) |
| 27 | 26 | com23 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) -> ( F oR <_ G -> ( h e. dom S.1 -> ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) ) |
| 28 | 27 | 3impia | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( h e. dom S.1 -> ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) |
| 29 | 28 | ralrimiv | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> A. h e. dom S.1 ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) |
| 30 | simp1 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> F : RR --> ( 0 [,] +oo ) ) |
|
| 31 | itg2cl | |- ( G : RR --> ( 0 [,] +oo ) -> ( S.2 ` G ) e. RR* ) |
|
| 32 | 31 | 3ad2ant2 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( S.2 ` G ) e. RR* ) |
| 33 | itg2leub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( S.2 ` G ) e. RR* ) -> ( ( S.2 ` F ) <_ ( S.2 ` G ) <-> A. h e. dom S.1 ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) |
|
| 34 | 30 32 33 | syl2anc | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( ( S.2 ` F ) <_ ( S.2 ` G ) <-> A. h e. dom S.1 ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) |
| 35 | 29 34 | mpbird | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( S.2 ` F ) <_ ( S.2 ` G ) ) |