This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqeltrrd.1 | |- ( ph -> A = B ) |
|
| eqeltrrd.2 | |- ( ph -> A e. C ) |
||
| Assertion | eqeltrrd | |- ( ph -> B e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrd.1 | |- ( ph -> A = B ) |
|
| 2 | eqeltrrd.2 | |- ( ph -> A e. C ) |
|
| 3 | 1 | eqcomd | |- ( ph -> B = A ) |
| 4 | 3 2 | eqeltrd | |- ( ph -> B e. C ) |