This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by NM, 15-Nov-2004) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprlub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( B < sup ( A , RR , < ) <-> E. z e. A B < z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | |- < Or RR |
|
| 2 | 1 | a1i | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> < Or RR ) |
| 3 | sup3 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. w e. A y < w ) ) ) |
|
| 4 | simp1 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> A C_ RR ) |
|
| 5 | 2 3 4 | suplub2 | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( B < sup ( A , RR , < ) <-> E. w e. A B < w ) ) |
| 6 | breq2 | |- ( w = z -> ( B < w <-> B < z ) ) |
|
| 7 | 6 | cbvrexvw | |- ( E. w e. A B < w <-> E. z e. A B < z ) |
| 8 | 5 7 | bitrdi | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. RR ) -> ( B < sup ( A , RR , < ) <-> E. z e. A B < z ) ) |