This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inmbl | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i B ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difundi | |- ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) = ( ( RR \ ( RR \ A ) ) i^i ( RR \ ( RR \ B ) ) ) |
|
| 2 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 3 | dfss4 | |- ( A C_ RR <-> ( RR \ ( RR \ A ) ) = A ) |
|
| 4 | 2 3 | sylib | |- ( A e. dom vol -> ( RR \ ( RR \ A ) ) = A ) |
| 5 | mblss | |- ( B e. dom vol -> B C_ RR ) |
|
| 6 | dfss4 | |- ( B C_ RR <-> ( RR \ ( RR \ B ) ) = B ) |
|
| 7 | 5 6 | sylib | |- ( B e. dom vol -> ( RR \ ( RR \ B ) ) = B ) |
| 8 | 4 7 | ineqan12d | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( RR \ ( RR \ A ) ) i^i ( RR \ ( RR \ B ) ) ) = ( A i^i B ) ) |
| 9 | 1 8 | eqtrid | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) = ( A i^i B ) ) |
| 10 | cmmbl | |- ( A e. dom vol -> ( RR \ A ) e. dom vol ) |
|
| 11 | cmmbl | |- ( B e. dom vol -> ( RR \ B ) e. dom vol ) |
|
| 12 | unmbl | |- ( ( ( RR \ A ) e. dom vol /\ ( RR \ B ) e. dom vol ) -> ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol ) |
| 14 | cmmbl | |- ( ( ( RR \ A ) u. ( RR \ B ) ) e. dom vol -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) e. dom vol ) |
|
| 15 | 13 14 | syl | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( RR \ ( ( RR \ A ) u. ( RR \ B ) ) ) e. dom vol ) |
| 16 | 9 15 | eqeltrrd | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A i^i B ) e. dom vol ) |