This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004) (Proof shortened by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunrab | |- U_ x e. A { y e. B | ph } = { y e. B | E. x e. A ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunab | |- U_ x e. A { y | ( y e. B /\ ph ) } = { y | E. x e. A ( y e. B /\ ph ) } |
|
| 2 | df-rab | |- { y e. B | ph } = { y | ( y e. B /\ ph ) } |
|
| 3 | 2 | a1i | |- ( x e. A -> { y e. B | ph } = { y | ( y e. B /\ ph ) } ) |
| 4 | 3 | iuneq2i | |- U_ x e. A { y e. B | ph } = U_ x e. A { y | ( y e. B /\ ph ) } |
| 5 | df-rab | |- { y e. B | E. x e. A ph } = { y | ( y e. B /\ E. x e. A ph ) } |
|
| 6 | r19.42v | |- ( E. x e. A ( y e. B /\ ph ) <-> ( y e. B /\ E. x e. A ph ) ) |
|
| 7 | 6 | abbii | |- { y | E. x e. A ( y e. B /\ ph ) } = { y | ( y e. B /\ E. x e. A ph ) } |
| 8 | 5 7 | eqtr4i | |- { y e. B | E. x e. A ph } = { y | E. x e. A ( y e. B /\ ph ) } |
| 9 | 1 4 8 | 3eqtr4i | |- U_ x e. A { y e. B | ph } = { y e. B | E. x e. A ph } |