This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of Gleason p. 180. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climsup.1 | |- Z = ( ZZ>= ` M ) |
|
| climsup.2 | |- ( ph -> M e. ZZ ) |
||
| climsup.3 | |- ( ph -> F : Z --> RR ) |
||
| climsup.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
||
| climsup.5 | |- ( ph -> E. x e. RR A. k e. Z ( F ` k ) <_ x ) |
||
| Assertion | climsup | |- ( ph -> F ~~> sup ( ran F , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climsup.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climsup.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climsup.3 | |- ( ph -> F : Z --> RR ) |
|
| 4 | climsup.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
|
| 5 | climsup.5 | |- ( ph -> E. x e. RR A. k e. Z ( F ` k ) <_ x ) |
|
| 6 | 3 | frnd | |- ( ph -> ran F C_ RR ) |
| 7 | 3 | ffnd | |- ( ph -> F Fn Z ) |
| 8 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 9 | 2 8 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 10 | 9 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 11 | fnfvelrn | |- ( ( F Fn Z /\ M e. Z ) -> ( F ` M ) e. ran F ) |
|
| 12 | 7 10 11 | syl2anc | |- ( ph -> ( F ` M ) e. ran F ) |
| 13 | 12 | ne0d | |- ( ph -> ran F =/= (/) ) |
| 14 | breq1 | |- ( y = ( F ` k ) -> ( y <_ x <-> ( F ` k ) <_ x ) ) |
|
| 15 | 14 | ralrn | |- ( F Fn Z -> ( A. y e. ran F y <_ x <-> A. k e. Z ( F ` k ) <_ x ) ) |
| 16 | 15 | rexbidv | |- ( F Fn Z -> ( E. x e. RR A. y e. ran F y <_ x <-> E. x e. RR A. k e. Z ( F ` k ) <_ x ) ) |
| 17 | 7 16 | syl | |- ( ph -> ( E. x e. RR A. y e. ran F y <_ x <-> E. x e. RR A. k e. Z ( F ` k ) <_ x ) ) |
| 18 | 5 17 | mpbird | |- ( ph -> E. x e. RR A. y e. ran F y <_ x ) |
| 19 | 6 13 18 | 3jca | |- ( ph -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) ) |
| 20 | suprcl | |- ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) -> sup ( ran F , RR , < ) e. RR ) |
|
| 21 | 19 20 | syl | |- ( ph -> sup ( ran F , RR , < ) e. RR ) |
| 22 | ltsubrp | |- ( ( sup ( ran F , RR , < ) e. RR /\ y e. RR+ ) -> ( sup ( ran F , RR , < ) - y ) < sup ( ran F , RR , < ) ) |
|
| 23 | 21 22 | sylan | |- ( ( ph /\ y e. RR+ ) -> ( sup ( ran F , RR , < ) - y ) < sup ( ran F , RR , < ) ) |
| 24 | 19 | adantr | |- ( ( ph /\ y e. RR+ ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) ) |
| 25 | rpre | |- ( y e. RR+ -> y e. RR ) |
|
| 26 | resubcl | |- ( ( sup ( ran F , RR , < ) e. RR /\ y e. RR ) -> ( sup ( ran F , RR , < ) - y ) e. RR ) |
|
| 27 | 21 25 26 | syl2an | |- ( ( ph /\ y e. RR+ ) -> ( sup ( ran F , RR , < ) - y ) e. RR ) |
| 28 | suprlub | |- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) /\ ( sup ( ran F , RR , < ) - y ) e. RR ) -> ( ( sup ( ran F , RR , < ) - y ) < sup ( ran F , RR , < ) <-> E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k ) ) |
|
| 29 | 24 27 28 | syl2anc | |- ( ( ph /\ y e. RR+ ) -> ( ( sup ( ran F , RR , < ) - y ) < sup ( ran F , RR , < ) <-> E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k ) ) |
| 30 | 23 29 | mpbid | |- ( ( ph /\ y e. RR+ ) -> E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k ) |
| 31 | breq2 | |- ( k = ( F ` j ) -> ( ( sup ( ran F , RR , < ) - y ) < k <-> ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) ) |
|
| 32 | 31 | rexrn | |- ( F Fn Z -> ( E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k <-> E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) ) |
| 33 | 7 32 | syl | |- ( ph -> ( E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k <-> E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) ) |
| 34 | 33 | biimpa | |- ( ( ph /\ E. k e. ran F ( sup ( ran F , RR , < ) - y ) < k ) -> E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) |
| 35 | 30 34 | syldan | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) ) |
| 36 | ffvelcdm | |- ( ( F : Z --> RR /\ j e. Z ) -> ( F ` j ) e. RR ) |
|
| 37 | 3 36 | sylan | |- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
| 38 | 37 | ad2ant2r | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` j ) e. RR ) |
| 39 | 3 | adantr | |- ( ( ph /\ y e. RR+ ) -> F : Z --> RR ) |
| 40 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 41 | ffvelcdm | |- ( ( F : Z --> RR /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 42 | 39 40 41 | syl2an | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. RR ) |
| 43 | 21 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> sup ( ran F , RR , < ) e. RR ) |
| 44 | simprr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> k e. ( ZZ>= ` j ) ) |
|
| 45 | fzssuz | |- ( j ... k ) C_ ( ZZ>= ` j ) |
|
| 46 | uzss | |- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` M ) ) |
|
| 47 | 46 1 | sseqtrrdi | |- ( j e. ( ZZ>= ` M ) -> ( ZZ>= ` j ) C_ Z ) |
| 48 | 47 1 | eleq2s | |- ( j e. Z -> ( ZZ>= ` j ) C_ Z ) |
| 49 | 48 | ad2antrl | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ZZ>= ` j ) C_ Z ) |
| 50 | 45 49 | sstrid | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( j ... k ) C_ Z ) |
| 51 | ffvelcdm | |- ( ( F : Z --> RR /\ n e. Z ) -> ( F ` n ) e. RR ) |
|
| 52 | 51 | ralrimiva | |- ( F : Z --> RR -> A. n e. Z ( F ` n ) e. RR ) |
| 53 | 3 52 | syl | |- ( ph -> A. n e. Z ( F ` n ) e. RR ) |
| 54 | 53 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. n e. Z ( F ` n ) e. RR ) |
| 55 | ssralv | |- ( ( j ... k ) C_ Z -> ( A. n e. Z ( F ` n ) e. RR -> A. n e. ( j ... k ) ( F ` n ) e. RR ) ) |
|
| 56 | 50 54 55 | sylc | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. n e. ( j ... k ) ( F ` n ) e. RR ) |
| 57 | 56 | r19.21bi | |- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... k ) ) -> ( F ` n ) e. RR ) |
| 58 | fzssuz | |- ( j ... ( k - 1 ) ) C_ ( ZZ>= ` j ) |
|
| 59 | 58 49 | sstrid | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( j ... ( k - 1 ) ) C_ Z ) |
| 60 | 59 | sselda | |- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... ( k - 1 ) ) ) -> n e. Z ) |
| 61 | 4 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 62 | 61 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> A. k e. Z ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 63 | fveq2 | |- ( k = n -> ( F ` k ) = ( F ` n ) ) |
|
| 64 | fvoveq1 | |- ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) |
|
| 65 | 63 64 | breq12d | |- ( k = n -> ( ( F ` k ) <_ ( F ` ( k + 1 ) ) <-> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) ) |
| 66 | 65 | rspccva | |- ( ( A. k e. Z ( F ` k ) <_ ( F ` ( k + 1 ) ) /\ n e. Z ) -> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) |
| 67 | 62 66 | sylan | |- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. Z ) -> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) |
| 68 | 60 67 | syldan | |- ( ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) /\ n e. ( j ... ( k - 1 ) ) ) -> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) |
| 69 | 44 57 68 | monoord | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` j ) <_ ( F ` k ) ) |
| 70 | 38 42 43 69 | lesub2dd | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( sup ( ran F , RR , < ) - ( F ` k ) ) <_ ( sup ( ran F , RR , < ) - ( F ` j ) ) ) |
| 71 | 43 42 | resubcld | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( sup ( ran F , RR , < ) - ( F ` k ) ) e. RR ) |
| 72 | 43 38 | resubcld | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( sup ( ran F , RR , < ) - ( F ` j ) ) e. RR ) |
| 73 | 25 | ad2antlr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> y e. RR ) |
| 74 | lelttr | |- ( ( ( sup ( ran F , RR , < ) - ( F ` k ) ) e. RR /\ ( sup ( ran F , RR , < ) - ( F ` j ) ) e. RR /\ y e. RR ) -> ( ( ( sup ( ran F , RR , < ) - ( F ` k ) ) <_ ( sup ( ran F , RR , < ) - ( F ` j ) ) /\ ( sup ( ran F , RR , < ) - ( F ` j ) ) < y ) -> ( sup ( ran F , RR , < ) - ( F ` k ) ) < y ) ) |
|
| 75 | 71 72 73 74 | syl3anc | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( sup ( ran F , RR , < ) - ( F ` k ) ) <_ ( sup ( ran F , RR , < ) - ( F ` j ) ) /\ ( sup ( ran F , RR , < ) - ( F ` j ) ) < y ) -> ( sup ( ran F , RR , < ) - ( F ` k ) ) < y ) ) |
| 76 | 70 75 | mpand | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( sup ( ran F , RR , < ) - ( F ` j ) ) < y -> ( sup ( ran F , RR , < ) - ( F ` k ) ) < y ) ) |
| 77 | ltsub23 | |- ( ( sup ( ran F , RR , < ) e. RR /\ y e. RR /\ ( F ` j ) e. RR ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) <-> ( sup ( ran F , RR , < ) - ( F ` j ) ) < y ) ) |
|
| 78 | 43 73 38 77 | syl3anc | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) <-> ( sup ( ran F , RR , < ) - ( F ` j ) ) < y ) ) |
| 79 | 19 | ad2antrr | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) ) |
| 80 | 7 | adantr | |- ( ( ph /\ y e. RR+ ) -> F Fn Z ) |
| 81 | fnfvelrn | |- ( ( F Fn Z /\ k e. Z ) -> ( F ` k ) e. ran F ) |
|
| 82 | 80 40 81 | syl2an | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) e. ran F ) |
| 83 | suprub | |- ( ( ( ran F C_ RR /\ ran F =/= (/) /\ E. x e. RR A. y e. ran F y <_ x ) /\ ( F ` k ) e. ran F ) -> ( F ` k ) <_ sup ( ran F , RR , < ) ) |
|
| 84 | 79 82 83 | syl2anc | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( F ` k ) <_ sup ( ran F , RR , < ) ) |
| 85 | 42 43 84 | abssuble0d | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) = ( sup ( ran F , RR , < ) - ( F ` k ) ) ) |
| 86 | 85 | breq1d | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y <-> ( sup ( ran F , RR , < ) - ( F ` k ) ) < y ) ) |
| 87 | 76 78 86 | 3imtr4d | |- ( ( ( ph /\ y e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) -> ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 88 | 87 | anassrs | |- ( ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) -> ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 89 | 88 | ralrimdva | |- ( ( ( ph /\ y e. RR+ ) /\ j e. Z ) -> ( ( sup ( ran F , RR , < ) - y ) < ( F ` j ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 90 | 89 | reximdva | |- ( ( ph /\ y e. RR+ ) -> ( E. j e. Z ( sup ( ran F , RR , < ) - y ) < ( F ` j ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 91 | 35 90 | mpd | |- ( ( ph /\ y e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) |
| 92 | 91 | ralrimiva | |- ( ph -> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) |
| 93 | 1 | fvexi | |- Z e. _V |
| 94 | fex | |- ( ( F : Z --> RR /\ Z e. _V ) -> F e. _V ) |
|
| 95 | 3 93 94 | sylancl | |- ( ph -> F e. _V ) |
| 96 | eqidd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 97 | 21 | recnd | |- ( ph -> sup ( ran F , RR , < ) e. CC ) |
| 98 | 3 41 | sylan | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 99 | 98 | recnd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 100 | 1 2 95 96 97 99 | clim2c | |- ( ph -> ( F ~~> sup ( ran F , RR , < ) <-> A. y e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( F ` k ) - sup ( ran F , RR , < ) ) ) < y ) ) |
| 101 | 92 100 | mpbird | |- ( ph -> F ~~> sup ( ran F , RR , < ) ) |