This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2mono . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mono.1 | |- G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
| itg2mono.2 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
||
| itg2mono.3 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
||
| itg2mono.4 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
||
| itg2mono.5 | |- ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
||
| itg2mono.6 | |- S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) |
||
| itg2monolem2.7 | |- ( ph -> P e. dom S.1 ) |
||
| itg2monolem2.8 | |- ( ph -> P oR <_ G ) |
||
| itg2monolem2.9 | |- ( ph -> -. ( S.1 ` P ) <_ S ) |
||
| Assertion | itg2monolem2 | |- ( ph -> S e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.1 | |- G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
| 2 | itg2mono.2 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
|
| 3 | itg2mono.3 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
|
| 4 | itg2mono.4 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
|
| 5 | itg2mono.5 | |- ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
|
| 6 | itg2mono.6 | |- S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) |
|
| 7 | itg2monolem2.7 | |- ( ph -> P e. dom S.1 ) |
|
| 8 | itg2monolem2.8 | |- ( ph -> P oR <_ G ) |
|
| 9 | itg2monolem2.9 | |- ( ph -> -. ( S.1 ` P ) <_ S ) |
|
| 10 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 11 | fss | |- ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
|
| 12 | 3 10 11 | sylancl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 13 | itg2cl | |- ( ( F ` n ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
|
| 14 | 12 13 | syl | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
| 15 | 14 | fmpttd | |- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR* ) |
| 16 | 15 | frnd | |- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* ) |
| 17 | supxrcl | |- ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) e. RR* ) |
|
| 18 | 16 17 | syl | |- ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) e. RR* ) |
| 19 | 6 18 | eqeltrid | |- ( ph -> S e. RR* ) |
| 20 | itg1cl | |- ( P e. dom S.1 -> ( S.1 ` P ) e. RR ) |
|
| 21 | 7 20 | syl | |- ( ph -> ( S.1 ` P ) e. RR ) |
| 22 | mnfxr | |- -oo e. RR* |
|
| 23 | 22 | a1i | |- ( ph -> -oo e. RR* ) |
| 24 | fveq2 | |- ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) |
|
| 25 | 24 | feq1d | |- ( n = 1 -> ( ( F ` n ) : RR --> ( 0 [,] +oo ) <-> ( F ` 1 ) : RR --> ( 0 [,] +oo ) ) ) |
| 26 | 12 | ralrimiva | |- ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 27 | 1nn | |- 1 e. NN |
|
| 28 | 27 | a1i | |- ( ph -> 1 e. NN ) |
| 29 | 25 26 28 | rspcdva | |- ( ph -> ( F ` 1 ) : RR --> ( 0 [,] +oo ) ) |
| 30 | itg2cl | |- ( ( F ` 1 ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( F ` 1 ) ) e. RR* ) |
|
| 31 | 29 30 | syl | |- ( ph -> ( S.2 ` ( F ` 1 ) ) e. RR* ) |
| 32 | itg2ge0 | |- ( ( F ` 1 ) : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` ( F ` 1 ) ) ) |
|
| 33 | 29 32 | syl | |- ( ph -> 0 <_ ( S.2 ` ( F ` 1 ) ) ) |
| 34 | mnflt0 | |- -oo < 0 |
|
| 35 | 0xr | |- 0 e. RR* |
|
| 36 | xrltletr | |- ( ( -oo e. RR* /\ 0 e. RR* /\ ( S.2 ` ( F ` 1 ) ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` ( F ` 1 ) ) ) -> -oo < ( S.2 ` ( F ` 1 ) ) ) ) |
|
| 37 | 22 35 31 36 | mp3an12i | |- ( ph -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` ( F ` 1 ) ) ) -> -oo < ( S.2 ` ( F ` 1 ) ) ) ) |
| 38 | 34 37 | mpani | |- ( ph -> ( 0 <_ ( S.2 ` ( F ` 1 ) ) -> -oo < ( S.2 ` ( F ` 1 ) ) ) ) |
| 39 | 33 38 | mpd | |- ( ph -> -oo < ( S.2 ` ( F ` 1 ) ) ) |
| 40 | 2fveq3 | |- ( n = 1 -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` 1 ) ) ) |
|
| 41 | eqid | |- ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) |
|
| 42 | fvex | |- ( S.2 ` ( F ` 1 ) ) e. _V |
|
| 43 | 40 41 42 | fvmpt | |- ( 1 e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` 1 ) = ( S.2 ` ( F ` 1 ) ) ) |
| 44 | 27 43 | ax-mp | |- ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` 1 ) = ( S.2 ` ( F ` 1 ) ) |
| 45 | 15 | ffnd | |- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN ) |
| 46 | fnfvelrn | |- ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN /\ 1 e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` 1 ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) |
|
| 47 | 45 27 46 | sylancl | |- ( ph -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` 1 ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) |
| 48 | 44 47 | eqeltrrid | |- ( ph -> ( S.2 ` ( F ` 1 ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) |
| 49 | supxrub | |- ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* /\ ( S.2 ` ( F ` 1 ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) -> ( S.2 ` ( F ` 1 ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) |
|
| 50 | 16 48 49 | syl2anc | |- ( ph -> ( S.2 ` ( F ` 1 ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) |
| 51 | 50 6 | breqtrrdi | |- ( ph -> ( S.2 ` ( F ` 1 ) ) <_ S ) |
| 52 | 23 31 19 39 51 | xrltletrd | |- ( ph -> -oo < S ) |
| 53 | 21 | rexrd | |- ( ph -> ( S.1 ` P ) e. RR* ) |
| 54 | xrltnle | |- ( ( S e. RR* /\ ( S.1 ` P ) e. RR* ) -> ( S < ( S.1 ` P ) <-> -. ( S.1 ` P ) <_ S ) ) |
|
| 55 | 19 53 54 | syl2anc | |- ( ph -> ( S < ( S.1 ` P ) <-> -. ( S.1 ` P ) <_ S ) ) |
| 56 | 9 55 | mpbird | |- ( ph -> S < ( S.1 ` P ) ) |
| 57 | 19 53 56 | xrltled | |- ( ph -> S <_ ( S.1 ` P ) ) |
| 58 | xrre | |- ( ( ( S e. RR* /\ ( S.1 ` P ) e. RR ) /\ ( -oo < S /\ S <_ ( S.1 ` P ) ) ) -> S e. RR ) |
|
| 59 | 19 21 52 57 58 | syl22anc | |- ( ph -> S e. RR ) |