This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfima | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf | |- ( F : A --> RR -> ( F e. MblFn <-> A. x e. ran (,) ( `' F " x ) e. dom vol ) ) |
|
| 2 | 1 | biimpac | |- ( ( F e. MblFn /\ F : A --> RR ) -> A. x e. ran (,) ( `' F " x ) e. dom vol ) |
| 3 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 4 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 5 | 3 4 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 6 | fnovrn | |- ( ( (,) Fn ( RR* X. RR* ) /\ B e. RR* /\ C e. RR* ) -> ( B (,) C ) e. ran (,) ) |
|
| 7 | 5 6 | mp3an1 | |- ( ( B e. RR* /\ C e. RR* ) -> ( B (,) C ) e. ran (,) ) |
| 8 | imaeq2 | |- ( x = ( B (,) C ) -> ( `' F " x ) = ( `' F " ( B (,) C ) ) ) |
|
| 9 | 8 | eleq1d | |- ( x = ( B (,) C ) -> ( ( `' F " x ) e. dom vol <-> ( `' F " ( B (,) C ) ) e. dom vol ) ) |
| 10 | 9 | rspccva | |- ( ( A. x e. ran (,) ( `' F " x ) e. dom vol /\ ( B (,) C ) e. ran (,) ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
| 11 | 2 7 10 | syl2an | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ ( B e. RR* /\ C e. RR* ) ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
| 12 | ndmioo | |- ( -. ( B e. RR* /\ C e. RR* ) -> ( B (,) C ) = (/) ) |
|
| 13 | 12 | imaeq2d | |- ( -. ( B e. RR* /\ C e. RR* ) -> ( `' F " ( B (,) C ) ) = ( `' F " (/) ) ) |
| 14 | ima0 | |- ( `' F " (/) ) = (/) |
|
| 15 | 13 14 | eqtrdi | |- ( -. ( B e. RR* /\ C e. RR* ) -> ( `' F " ( B (,) C ) ) = (/) ) |
| 16 | 0mbl | |- (/) e. dom vol |
|
| 17 | 15 16 | eqeltrdi | |- ( -. ( B e. RR* /\ C e. RR* ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
| 18 | 17 | adantl | |- ( ( ( F e. MblFn /\ F : A --> RR ) /\ -. ( B e. RR* /\ C e. RR* ) ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |
| 19 | 11 18 | pm2.61dan | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( B (,) C ) ) e. dom vol ) |