This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2nn | |- ( A e. NN -> ( A + 1 ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) Fn _om |
|
| 2 | fvelrnb | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) Fn _om -> ( A e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) = A ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) <-> E. y e. _om ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) = A ) |
| 4 | ovex | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) + 1 ) e. _V |
|
| 5 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
|
| 6 | oveq1 | |- ( z = x -> ( z + 1 ) = ( x + 1 ) ) |
|
| 7 | oveq1 | |- ( z = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) -> ( z + 1 ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) + 1 ) ) |
|
| 8 | 5 6 7 | frsucmpt2 | |- ( ( y e. _om /\ ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) + 1 ) e. _V ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) + 1 ) ) |
| 9 | 4 8 | mpan2 | |- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` suc y ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) + 1 ) ) |
| 10 | peano2 | |- ( y e. _om -> suc y e. _om ) |
|
| 11 | fnfvelrn | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) Fn _om /\ suc y e. _om ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ) |
|
| 12 | 1 10 11 | sylancr | |- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` suc y ) e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ) |
| 13 | df-nn | |- NN = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om ) |
|
| 14 | df-ima | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om ) = ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
|
| 15 | 13 14 | eqtri | |- NN = ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
| 16 | 12 15 | eleqtrrdi | |- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` suc y ) e. NN ) |
| 17 | 9 16 | eqeltrrd | |- ( y e. _om -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) + 1 ) e. NN ) |
| 18 | oveq1 | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) = A -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) + 1 ) = ( A + 1 ) ) |
|
| 19 | 18 | eleq1d | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) = A -> ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) + 1 ) e. NN <-> ( A + 1 ) e. NN ) ) |
| 20 | 17 19 | syl5ibcom | |- ( y e. _om -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) = A -> ( A + 1 ) e. NN ) ) |
| 21 | 20 | rexlimiv | |- ( E. y e. _om ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` y ) = A -> ( A + 1 ) e. NN ) |
| 22 | 3 21 | sylbi | |- ( A e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) -> ( A + 1 ) e. NN ) |
| 23 | 22 15 | eleq2s | |- ( A e. NN -> ( A + 1 ) e. NN ) |