This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative real function F is an upper bound on the integrals of all simple functions G dominated by F . (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2ub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G e. dom S.1 /\ G oR <_ F ) -> ( S.1 ` G ) <_ ( S.2 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
|
| 2 | 1 | itg2lcl | |- { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* |
| 3 | 1 | itg2lr | |- ( ( G e. dom S.1 /\ G oR <_ F ) -> ( S.1 ` G ) e. { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } ) |
| 4 | 3 | 3adant1 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G e. dom S.1 /\ G oR <_ F ) -> ( S.1 ` G ) e. { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } ) |
| 5 | supxrub | |- ( ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* /\ ( S.1 ` G ) e. { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } ) -> ( S.1 ` G ) <_ sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
|
| 6 | 2 4 5 | sylancr | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G e. dom S.1 /\ G oR <_ F ) -> ( S.1 ` G ) <_ sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
| 7 | 1 | itg2val | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) = sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
| 8 | 7 | 3ad2ant1 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G e. dom S.1 /\ G oR <_ F ) -> ( S.2 ` F ) = sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
| 9 | 6 8 | breqtrrd | |- ( ( F : RR --> ( 0 [,] +oo ) /\ G e. dom S.1 /\ G oR <_ F ) -> ( S.1 ` G ) <_ ( S.2 ` F ) ) |