This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioomnf | |- ( A e. RR* -> ( B e. ( -oo (,) A ) <-> ( B e. RR /\ B < A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | |- -oo e. RR* |
|
| 2 | elioo2 | |- ( ( -oo e. RR* /\ A e. RR* ) -> ( B e. ( -oo (,) A ) <-> ( B e. RR /\ -oo < B /\ B < A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR* -> ( B e. ( -oo (,) A ) <-> ( B e. RR /\ -oo < B /\ B < A ) ) ) |
| 4 | an32 | |- ( ( ( B e. RR /\ -oo < B ) /\ B < A ) <-> ( ( B e. RR /\ B < A ) /\ -oo < B ) ) |
|
| 5 | df-3an | |- ( ( B e. RR /\ -oo < B /\ B < A ) <-> ( ( B e. RR /\ -oo < B ) /\ B < A ) ) |
|
| 6 | mnflt | |- ( B e. RR -> -oo < B ) |
|
| 7 | 6 | adantr | |- ( ( B e. RR /\ B < A ) -> -oo < B ) |
| 8 | 7 | pm4.71i | |- ( ( B e. RR /\ B < A ) <-> ( ( B e. RR /\ B < A ) /\ -oo < B ) ) |
| 9 | 4 5 8 | 3bitr4i | |- ( ( B e. RR /\ -oo < B /\ B < A ) <-> ( B e. RR /\ B < A ) ) |
| 10 | 3 9 | bitrdi | |- ( A e. RR* -> ( B e. ( -oo (,) A ) <-> ( B e. RR /\ B < A ) ) ) |