This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval.1 | |- ( ph -> F Fn A ) |
|
| offval.2 | |- ( ph -> G Fn B ) |
||
| offval.3 | |- ( ph -> A e. V ) |
||
| offval.4 | |- ( ph -> B e. W ) |
||
| offval.5 | |- ( A i^i B ) = S |
||
| ofval.6 | |- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) |
||
| ofval.7 | |- ( ( ph /\ X e. B ) -> ( G ` X ) = D ) |
||
| Assertion | ofval | |- ( ( ph /\ X e. S ) -> ( ( F oF R G ) ` X ) = ( C R D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | |- ( ph -> F Fn A ) |
|
| 2 | offval.2 | |- ( ph -> G Fn B ) |
|
| 3 | offval.3 | |- ( ph -> A e. V ) |
|
| 4 | offval.4 | |- ( ph -> B e. W ) |
|
| 5 | offval.5 | |- ( A i^i B ) = S |
|
| 6 | ofval.6 | |- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) |
|
| 7 | ofval.7 | |- ( ( ph /\ X e. B ) -> ( G ` X ) = D ) |
|
| 8 | eqidd | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 9 | eqidd | |- ( ( ph /\ x e. B ) -> ( G ` x ) = ( G ` x ) ) |
|
| 10 | 1 2 3 4 5 8 9 | offval | |- ( ph -> ( F oF R G ) = ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 11 | 10 | fveq1d | |- ( ph -> ( ( F oF R G ) ` X ) = ( ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ` X ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ X e. S ) -> ( ( F oF R G ) ` X ) = ( ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ` X ) ) |
| 13 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 14 | fveq2 | |- ( x = X -> ( G ` x ) = ( G ` X ) ) |
|
| 15 | 13 14 | oveq12d | |- ( x = X -> ( ( F ` x ) R ( G ` x ) ) = ( ( F ` X ) R ( G ` X ) ) ) |
| 16 | eqid | |- ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) = ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) |
|
| 17 | ovex | |- ( ( F ` X ) R ( G ` X ) ) e. _V |
|
| 18 | 15 16 17 | fvmpt | |- ( X e. S -> ( ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ` X ) = ( ( F ` X ) R ( G ` X ) ) ) |
| 19 | 18 | adantl | |- ( ( ph /\ X e. S ) -> ( ( x e. S |-> ( ( F ` x ) R ( G ` x ) ) ) ` X ) = ( ( F ` X ) R ( G ` X ) ) ) |
| 20 | inss1 | |- ( A i^i B ) C_ A |
|
| 21 | 5 20 | eqsstrri | |- S C_ A |
| 22 | 21 | sseli | |- ( X e. S -> X e. A ) |
| 23 | 22 6 | sylan2 | |- ( ( ph /\ X e. S ) -> ( F ` X ) = C ) |
| 24 | inss2 | |- ( A i^i B ) C_ B |
|
| 25 | 5 24 | eqsstrri | |- S C_ B |
| 26 | 25 | sseli | |- ( X e. S -> X e. B ) |
| 27 | 26 7 | sylan2 | |- ( ( ph /\ X e. S ) -> ( G ` X ) = D ) |
| 28 | 23 27 | oveq12d | |- ( ( ph /\ X e. S ) -> ( ( F ` X ) R ( G ` X ) ) = ( C R D ) ) |
| 29 | 12 19 28 | 3eqtrd | |- ( ( ph /\ X e. S ) -> ( ( F oF R G ) ` X ) = ( C R D ) ) |