This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside A .) (Contributed by Mario Carneiro, 29-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1fres.1 | |- G = ( x e. RR |-> if ( x e. A , ( F ` x ) , 0 ) ) |
|
| Assertion | i1fres | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> G e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fres.1 | |- G = ( x e. RR |-> if ( x e. A , ( F ` x ) , 0 ) ) |
|
| 2 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 3 | 2 | adantr | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> F : RR --> RR ) |
| 4 | 3 | ffnd | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> F Fn RR ) |
| 5 | fnfvelrn | |- ( ( F Fn RR /\ x e. RR ) -> ( F ` x ) e. ran F ) |
|
| 6 | 4 5 | sylan | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ x e. RR ) -> ( F ` x ) e. ran F ) |
| 7 | i1f0rn | |- ( F e. dom S.1 -> 0 e. ran F ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ x e. RR ) -> 0 e. ran F ) |
| 9 | 6 8 | ifcld | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ x e. RR ) -> if ( x e. A , ( F ` x ) , 0 ) e. ran F ) |
| 10 | 9 1 | fmptd | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> G : RR --> ran F ) |
| 11 | 3 | frnd | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> ran F C_ RR ) |
| 12 | 10 11 | fssd | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> G : RR --> RR ) |
| 13 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 14 | 13 | adantr | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> ran F e. Fin ) |
| 15 | 10 | frnd | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> ran G C_ ran F ) |
| 16 | 14 15 | ssfid | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> ran G e. Fin ) |
| 17 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 18 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 19 | 17 18 | ifbieq1d | |- ( x = z -> if ( x e. A , ( F ` x ) , 0 ) = if ( z e. A , ( F ` z ) , 0 ) ) |
| 20 | fvex | |- ( F ` z ) e. _V |
|
| 21 | c0ex | |- 0 e. _V |
|
| 22 | 20 21 | ifex | |- if ( z e. A , ( F ` z ) , 0 ) e. _V |
| 23 | 19 1 22 | fvmpt | |- ( z e. RR -> ( G ` z ) = if ( z e. A , ( F ` z ) , 0 ) ) |
| 24 | 23 | adantl | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( G ` z ) = if ( z e. A , ( F ` z ) , 0 ) ) |
| 25 | 24 | eqeq1d | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( ( G ` z ) = y <-> if ( z e. A , ( F ` z ) , 0 ) = y ) ) |
| 26 | eldifsni | |- ( y e. ( ran G \ { 0 } ) -> y =/= 0 ) |
|
| 27 | 26 | ad2antlr | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> y =/= 0 ) |
| 28 | 27 | necomd | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> 0 =/= y ) |
| 29 | iffalse | |- ( -. z e. A -> if ( z e. A , ( F ` z ) , 0 ) = 0 ) |
|
| 30 | 29 | neeq1d | |- ( -. z e. A -> ( if ( z e. A , ( F ` z ) , 0 ) =/= y <-> 0 =/= y ) ) |
| 31 | 28 30 | syl5ibrcom | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( -. z e. A -> if ( z e. A , ( F ` z ) , 0 ) =/= y ) ) |
| 32 | 31 | necon4bd | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( if ( z e. A , ( F ` z ) , 0 ) = y -> z e. A ) ) |
| 33 | 32 | pm4.71rd | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( if ( z e. A , ( F ` z ) , 0 ) = y <-> ( z e. A /\ if ( z e. A , ( F ` z ) , 0 ) = y ) ) ) |
| 34 | 25 33 | bitrd | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( ( G ` z ) = y <-> ( z e. A /\ if ( z e. A , ( F ` z ) , 0 ) = y ) ) ) |
| 35 | iftrue | |- ( z e. A -> if ( z e. A , ( F ` z ) , 0 ) = ( F ` z ) ) |
|
| 36 | 35 | eqeq1d | |- ( z e. A -> ( if ( z e. A , ( F ` z ) , 0 ) = y <-> ( F ` z ) = y ) ) |
| 37 | 36 | pm5.32i | |- ( ( z e. A /\ if ( z e. A , ( F ` z ) , 0 ) = y ) <-> ( z e. A /\ ( F ` z ) = y ) ) |
| 38 | 34 37 | bitrdi | |- ( ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) /\ z e. RR ) -> ( ( G ` z ) = y <-> ( z e. A /\ ( F ` z ) = y ) ) ) |
| 39 | 38 | pm5.32da | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( ( z e. RR /\ ( G ` z ) = y ) <-> ( z e. RR /\ ( z e. A /\ ( F ` z ) = y ) ) ) ) |
| 40 | an12 | |- ( ( z e. RR /\ ( z e. A /\ ( F ` z ) = y ) ) <-> ( z e. A /\ ( z e. RR /\ ( F ` z ) = y ) ) ) |
|
| 41 | 39 40 | bitrdi | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( ( z e. RR /\ ( G ` z ) = y ) <-> ( z e. A /\ ( z e. RR /\ ( F ` z ) = y ) ) ) ) |
| 42 | 10 | ffnd | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> G Fn RR ) |
| 43 | 42 | adantr | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> G Fn RR ) |
| 44 | fniniseg | |- ( G Fn RR -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
|
| 45 | 43 44 | syl | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( `' G " { y } ) <-> ( z e. RR /\ ( G ` z ) = y ) ) ) |
| 46 | 4 | adantr | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> F Fn RR ) |
| 47 | fniniseg | |- ( F Fn RR -> ( z e. ( `' F " { y } ) <-> ( z e. RR /\ ( F ` z ) = y ) ) ) |
|
| 48 | 46 47 | syl | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( `' F " { y } ) <-> ( z e. RR /\ ( F ` z ) = y ) ) ) |
| 49 | 48 | anbi2d | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( ( z e. A /\ z e. ( `' F " { y } ) ) <-> ( z e. A /\ ( z e. RR /\ ( F ` z ) = y ) ) ) ) |
| 50 | 41 45 49 | 3bitr4d | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( `' G " { y } ) <-> ( z e. A /\ z e. ( `' F " { y } ) ) ) ) |
| 51 | elin | |- ( z e. ( A i^i ( `' F " { y } ) ) <-> ( z e. A /\ z e. ( `' F " { y } ) ) ) |
|
| 52 | 50 51 | bitr4di | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( z e. ( `' G " { y } ) <-> z e. ( A i^i ( `' F " { y } ) ) ) ) |
| 53 | 52 | eqrdv | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( `' G " { y } ) = ( A i^i ( `' F " { y } ) ) ) |
| 54 | simplr | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> A e. dom vol ) |
|
| 55 | i1fima | |- ( F e. dom S.1 -> ( `' F " { y } ) e. dom vol ) |
|
| 56 | 55 | ad2antrr | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( `' F " { y } ) e. dom vol ) |
| 57 | inmbl | |- ( ( A e. dom vol /\ ( `' F " { y } ) e. dom vol ) -> ( A i^i ( `' F " { y } ) ) e. dom vol ) |
|
| 58 | 54 56 57 | syl2anc | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( A i^i ( `' F " { y } ) ) e. dom vol ) |
| 59 | 53 58 | eqeltrd | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( `' G " { y } ) e. dom vol ) |
| 60 | 53 | fveq2d | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { y } ) ) = ( vol ` ( A i^i ( `' F " { y } ) ) ) ) |
| 61 | mblvol | |- ( ( A i^i ( `' F " { y } ) ) e. dom vol -> ( vol ` ( A i^i ( `' F " { y } ) ) ) = ( vol* ` ( A i^i ( `' F " { y } ) ) ) ) |
|
| 62 | 58 61 | syl | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( vol ` ( A i^i ( `' F " { y } ) ) ) = ( vol* ` ( A i^i ( `' F " { y } ) ) ) ) |
| 63 | 60 62 | eqtrd | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { y } ) ) = ( vol* ` ( A i^i ( `' F " { y } ) ) ) ) |
| 64 | inss2 | |- ( A i^i ( `' F " { y } ) ) C_ ( `' F " { y } ) |
|
| 65 | mblss | |- ( ( `' F " { y } ) e. dom vol -> ( `' F " { y } ) C_ RR ) |
|
| 66 | 56 65 | syl | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( `' F " { y } ) C_ RR ) |
| 67 | mblvol | |- ( ( `' F " { y } ) e. dom vol -> ( vol ` ( `' F " { y } ) ) = ( vol* ` ( `' F " { y } ) ) ) |
|
| 68 | 56 67 | syl | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = ( vol* ` ( `' F " { y } ) ) ) |
| 69 | i1fima2sn | |- ( ( F e. dom S.1 /\ y e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) e. RR ) |
|
| 70 | 69 | adantlr | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) e. RR ) |
| 71 | 68 70 | eqeltrrd | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( vol* ` ( `' F " { y } ) ) e. RR ) |
| 72 | ovolsscl | |- ( ( ( A i^i ( `' F " { y } ) ) C_ ( `' F " { y } ) /\ ( `' F " { y } ) C_ RR /\ ( vol* ` ( `' F " { y } ) ) e. RR ) -> ( vol* ` ( A i^i ( `' F " { y } ) ) ) e. RR ) |
|
| 73 | 64 66 71 72 | mp3an2i | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( vol* ` ( A i^i ( `' F " { y } ) ) ) e. RR ) |
| 74 | 63 73 | eqeltrd | |- ( ( ( F e. dom S.1 /\ A e. dom vol ) /\ y e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { y } ) ) e. RR ) |
| 75 | 12 16 59 74 | i1fd | |- ( ( F e. dom S.1 /\ A e. dom vol ) -> G e. dom S.1 ) |