This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eleq1d.1 | |- ( ph -> A = B ) |
|
| Assertion | eleq2d | |- ( ph -> ( C e. A <-> C e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1d.1 | |- ( ph -> A = B ) |
|
| 2 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
| 3 | 1 2 | sylib | |- ( ph -> A. x ( x e. A <-> x e. B ) ) |
| 4 | anbi2 | |- ( ( x e. A <-> x e. B ) -> ( ( x = C /\ x e. A ) <-> ( x = C /\ x e. B ) ) ) |
|
| 5 | 4 | alexbii | |- ( A. x ( x e. A <-> x e. B ) -> ( E. x ( x = C /\ x e. A ) <-> E. x ( x = C /\ x e. B ) ) ) |
| 6 | 3 5 | syl | |- ( ph -> ( E. x ( x = C /\ x e. A ) <-> E. x ( x = C /\ x e. B ) ) ) |
| 7 | dfclel | |- ( C e. A <-> E. x ( x = C /\ x e. A ) ) |
|
| 8 | dfclel | |- ( C e. B <-> E. x ( x = C /\ x e. B ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ph -> ( C e. A <-> C e. B ) ) |