This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an S.2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg2lecl | |- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> ( S.2 ` F ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2cl | |- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> ( S.2 ` F ) e. RR* ) |
| 3 | simp2 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> A e. RR ) |
|
| 4 | itg2ge0 | |- ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> 0 <_ ( S.2 ` F ) ) |
| 6 | simp3 | |- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> ( S.2 ` F ) <_ A ) |
|
| 7 | xrrege0 | |- ( ( ( ( S.2 ` F ) e. RR* /\ A e. RR ) /\ ( 0 <_ ( S.2 ` F ) /\ ( S.2 ` F ) <_ A ) ) -> ( S.2 ` F ) e. RR ) |
|
| 8 | 2 3 5 6 7 | syl22anc | |- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> ( S.2 ` F ) e. RR ) |