This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmmbl | |- ( A e. dom vol -> ( RR \ A ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difssd | |- ( A e. dom vol -> ( RR \ A ) C_ RR ) |
|
| 2 | elpwi | |- ( x e. ~P RR -> x C_ RR ) |
|
| 3 | inss1 | |- ( x i^i A ) C_ x |
|
| 4 | ovolsscl | |- ( ( ( x i^i A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
|
| 5 | 3 4 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 6 | 5 | 3adant1 | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 7 | 6 | recnd | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. CC ) |
| 8 | difss | |- ( x \ A ) C_ x |
|
| 9 | ovolsscl | |- ( ( ( x \ A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
|
| 10 | 8 9 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 11 | 10 | 3adant1 | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 12 | 11 | recnd | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. CC ) |
| 13 | 7 12 | addcomd | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( ( vol* ` ( x \ A ) ) + ( vol* ` ( x i^i A ) ) ) ) |
| 14 | mblsplit | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
|
| 15 | indifcom | |- ( RR i^i ( x \ A ) ) = ( x i^i ( RR \ A ) ) |
|
| 16 | simp2 | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) |
|
| 17 | 16 | ssdifssd | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ A ) C_ RR ) |
| 18 | sseqin2 | |- ( ( x \ A ) C_ RR <-> ( RR i^i ( x \ A ) ) = ( x \ A ) ) |
|
| 19 | 17 18 | sylib | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( RR i^i ( x \ A ) ) = ( x \ A ) ) |
| 20 | 15 19 | eqtr3id | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x i^i ( RR \ A ) ) = ( x \ A ) ) |
| 21 | 20 | fveq2d | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i ( RR \ A ) ) ) = ( vol* ` ( x \ A ) ) ) |
| 22 | difin | |- ( x \ ( x i^i ( RR \ A ) ) ) = ( x \ ( RR \ A ) ) |
|
| 23 | 20 | difeq2d | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ ( x i^i ( RR \ A ) ) ) = ( x \ ( x \ A ) ) ) |
| 24 | 22 23 | eqtr3id | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ ( RR \ A ) ) = ( x \ ( x \ A ) ) ) |
| 25 | dfin4 | |- ( x i^i A ) = ( x \ ( x \ A ) ) |
|
| 26 | 24 25 | eqtr4di | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( x \ ( RR \ A ) ) = ( x i^i A ) ) |
| 27 | 26 | fveq2d | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ ( RR \ A ) ) ) = ( vol* ` ( x i^i A ) ) ) |
| 28 | 21 27 | oveq12d | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) = ( ( vol* ` ( x \ A ) ) + ( vol* ` ( x i^i A ) ) ) ) |
| 29 | 13 14 28 | 3eqtr4d | |- ( ( A e. dom vol /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) |
| 30 | 29 | 3expia | |- ( ( A e. dom vol /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) ) |
| 31 | 2 30 | sylan2 | |- ( ( A e. dom vol /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) ) |
| 32 | 31 | ralrimiva | |- ( A e. dom vol -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) ) |
| 33 | ismbl | |- ( ( RR \ A ) e. dom vol <-> ( ( RR \ A ) C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i ( RR \ A ) ) ) + ( vol* ` ( x \ ( RR \ A ) ) ) ) ) ) ) |
|
| 34 | 1 32 33 | sylanbrc | |- ( A e. dom vol -> ( RR \ A ) e. dom vol ) |