This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1nn | |- 1 e. NN |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex | |- 1 e. _V |
|
| 2 | fr0g | |- ( 1 e. _V -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` (/) ) = 1 ) |
|
| 3 | 1 2 | ax-mp | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` (/) ) = 1 |
| 4 | frfnom | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) Fn _om |
|
| 5 | peano1 | |- (/) e. _om |
|
| 6 | fnfvelrn | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) Fn _om /\ (/) e. _om ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` (/) ) e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ) |
|
| 7 | 4 5 6 | mp2an | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` (/) ) e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
| 8 | 3 7 | eqeltrri | |- 1 e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
| 9 | df-nn | |- NN = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om ) |
|
| 10 | df-ima | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om ) = ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
|
| 11 | 9 10 | eqtri | |- NN = ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
| 12 | 8 11 | eleqtrri | |- 1 e. NN |