This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Monotone Convergence Theorem for nonnegative functions. If { ( Fn ) : n e. NN } is a monotone increasing sequence of positive, measurable, real-valued functions, and G is the pointwise limit of the sequence, then ( S.2G ) is the limit of the sequence { ( S.2( Fn ) ) : n e. NN } . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mono.1 | |- G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
| itg2mono.2 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
||
| itg2mono.3 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
||
| itg2mono.4 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
||
| itg2mono.5 | |- ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
||
| itg2mono.6 | |- S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) |
||
| Assertion | itg2mono | |- ( ph -> ( S.2 ` G ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.1 | |- G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
| 2 | itg2mono.2 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
|
| 3 | itg2mono.3 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
|
| 4 | itg2mono.4 | |- ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
|
| 5 | itg2mono.5 | |- ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
|
| 6 | itg2mono.6 | |- S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) |
|
| 7 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 8 | fss | |- ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` n ) : RR --> RR ) |
|
| 9 | 3 7 8 | sylancl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> RR ) |
| 10 | 9 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) e. RR ) |
| 11 | 10 | an32s | |- ( ( ( ph /\ x e. RR ) /\ n e. NN ) -> ( ( F ` n ) ` x ) e. RR ) |
| 12 | 11 | fmpttd | |- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) : NN --> RR ) |
| 13 | 12 | frnd | |- ( ( ph /\ x e. RR ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR ) |
| 14 | 1nn | |- 1 e. NN |
|
| 15 | eqid | |- ( n e. NN |-> ( ( F ` n ) ` x ) ) = ( n e. NN |-> ( ( F ` n ) ` x ) ) |
|
| 16 | 15 11 | dmmptd | |- ( ( ph /\ x e. RR ) -> dom ( n e. NN |-> ( ( F ` n ) ` x ) ) = NN ) |
| 17 | 14 16 | eleqtrrid | |- ( ( ph /\ x e. RR ) -> 1 e. dom ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
| 18 | 17 | ne0d | |- ( ( ph /\ x e. RR ) -> dom ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 19 | dm0rn0 | |- ( dom ( n e. NN |-> ( ( F ` n ) ` x ) ) = (/) <-> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) = (/) ) |
|
| 20 | 19 | necon3bii | |- ( dom ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) <-> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 21 | 18 20 | sylib | |- ( ( ph /\ x e. RR ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) |
| 22 | 12 | ffnd | |- ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN ) |
| 23 | breq1 | |- ( z = ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) -> ( z <_ y <-> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
|
| 24 | 23 | ralrn | |- ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
| 25 | 22 24 | syl | |- ( ( ph /\ x e. RR ) -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) |
| 26 | fveq2 | |- ( n = m -> ( F ` n ) = ( F ` m ) ) |
|
| 27 | 26 | fveq1d | |- ( n = m -> ( ( F ` n ) ` x ) = ( ( F ` m ) ` x ) ) |
| 28 | fvex | |- ( ( F ` m ) ` x ) e. _V |
|
| 29 | 27 15 28 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) = ( ( F ` m ) ` x ) ) |
| 30 | 29 | breq1d | |- ( m e. NN -> ( ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> ( ( F ` m ) ` x ) <_ y ) ) |
| 31 | 30 | ralbiia | |- ( A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> A. m e. NN ( ( F ` m ) ` x ) <_ y ) |
| 32 | 27 | breq1d | |- ( n = m -> ( ( ( F ` n ) ` x ) <_ y <-> ( ( F ` m ) ` x ) <_ y ) ) |
| 33 | 32 | cbvralvw | |- ( A. n e. NN ( ( F ` n ) ` x ) <_ y <-> A. m e. NN ( ( F ` m ) ` x ) <_ y ) |
| 34 | 31 33 | bitr4i | |- ( A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
| 35 | 25 34 | bitrdi | |- ( ( ph /\ x e. RR ) -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. n e. NN ( ( F ` n ) ` x ) <_ y ) ) |
| 36 | 35 | rexbidv | |- ( ( ph /\ x e. RR ) -> ( E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) ) |
| 37 | 5 36 | mpbird | |- ( ( ph /\ x e. RR ) -> E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) |
| 38 | 13 21 37 | suprcld | |- ( ( ph /\ x e. RR ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) |
| 39 | 38 | rexrd | |- ( ( ph /\ x e. RR ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR* ) |
| 40 | 0red | |- ( ( ph /\ x e. RR ) -> 0 e. RR ) |
|
| 41 | fveq2 | |- ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) |
|
| 42 | 41 | feq1d | |- ( n = 1 -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` 1 ) : RR --> ( 0 [,) +oo ) ) ) |
| 43 | 3 | ralrimiva | |- ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
| 44 | 14 | a1i | |- ( ph -> 1 e. NN ) |
| 45 | 42 43 44 | rspcdva | |- ( ph -> ( F ` 1 ) : RR --> ( 0 [,) +oo ) ) |
| 46 | 45 | ffvelcdmda | |- ( ( ph /\ x e. RR ) -> ( ( F ` 1 ) ` x ) e. ( 0 [,) +oo ) ) |
| 47 | elrege0 | |- ( ( ( F ` 1 ) ` x ) e. ( 0 [,) +oo ) <-> ( ( ( F ` 1 ) ` x ) e. RR /\ 0 <_ ( ( F ` 1 ) ` x ) ) ) |
|
| 48 | 46 47 | sylib | |- ( ( ph /\ x e. RR ) -> ( ( ( F ` 1 ) ` x ) e. RR /\ 0 <_ ( ( F ` 1 ) ` x ) ) ) |
| 49 | 48 | simpld | |- ( ( ph /\ x e. RR ) -> ( ( F ` 1 ) ` x ) e. RR ) |
| 50 | 48 | simprd | |- ( ( ph /\ x e. RR ) -> 0 <_ ( ( F ` 1 ) ` x ) ) |
| 51 | 41 | fveq1d | |- ( n = 1 -> ( ( F ` n ) ` x ) = ( ( F ` 1 ) ` x ) ) |
| 52 | fvex | |- ( ( F ` 1 ) ` x ) e. _V |
|
| 53 | 51 15 52 | fvmpt | |- ( 1 e. NN -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` 1 ) = ( ( F ` 1 ) ` x ) ) |
| 54 | 14 53 | ax-mp | |- ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` 1 ) = ( ( F ` 1 ) ` x ) |
| 55 | fnfvelrn | |- ( ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN /\ 1 e. NN ) -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` 1 ) e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
|
| 56 | 22 14 55 | sylancl | |- ( ( ph /\ x e. RR ) -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` 1 ) e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
| 57 | 54 56 | eqeltrrid | |- ( ( ph /\ x e. RR ) -> ( ( F ` 1 ) ` x ) e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
| 58 | 13 21 37 57 | suprubd | |- ( ( ph /\ x e. RR ) -> ( ( F ` 1 ) ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 59 | 40 49 38 50 58 | letrd | |- ( ( ph /\ x e. RR ) -> 0 <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 60 | elxrge0 | |- ( sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. ( 0 [,] +oo ) <-> ( sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR* /\ 0 <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) ) |
|
| 61 | 39 59 60 | sylanbrc | |- ( ( ph /\ x e. RR ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. ( 0 [,] +oo ) ) |
| 62 | 61 1 | fmptd | |- ( ph -> G : RR --> ( 0 [,] +oo ) ) |
| 63 | itg2cl | |- ( G : RR --> ( 0 [,] +oo ) -> ( S.2 ` G ) e. RR* ) |
|
| 64 | 62 63 | syl | |- ( ph -> ( S.2 ` G ) e. RR* ) |
| 65 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 66 | fss | |- ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
|
| 67 | 3 65 66 | sylancl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) |
| 68 | itg2cl | |- ( ( F ` n ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
|
| 69 | 67 68 | syl | |- ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR* ) |
| 70 | 69 | fmpttd | |- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR* ) |
| 71 | 70 | frnd | |- ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* ) |
| 72 | supxrcl | |- ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) e. RR* ) |
|
| 73 | 71 72 | syl | |- ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) e. RR* ) |
| 74 | 6 73 | eqeltrid | |- ( ph -> S e. RR* ) |
| 75 | 2 | adantlr | |- ( ( ( ph /\ ( ( f e. dom S.1 /\ f oR <_ G ) /\ -. ( S.1 ` f ) <_ S ) ) /\ n e. NN ) -> ( F ` n ) e. MblFn ) |
| 76 | 3 | adantlr | |- ( ( ( ph /\ ( ( f e. dom S.1 /\ f oR <_ G ) /\ -. ( S.1 ` f ) <_ S ) ) /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) |
| 77 | 4 | adantlr | |- ( ( ( ph /\ ( ( f e. dom S.1 /\ f oR <_ G ) /\ -. ( S.1 ` f ) <_ S ) ) /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) |
| 78 | 5 | adantlr | |- ( ( ( ph /\ ( ( f e. dom S.1 /\ f oR <_ G ) /\ -. ( S.1 ` f ) <_ S ) ) /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) |
| 79 | simprll | |- ( ( ph /\ ( ( f e. dom S.1 /\ f oR <_ G ) /\ -. ( S.1 ` f ) <_ S ) ) -> f e. dom S.1 ) |
|
| 80 | simprlr | |- ( ( ph /\ ( ( f e. dom S.1 /\ f oR <_ G ) /\ -. ( S.1 ` f ) <_ S ) ) -> f oR <_ G ) |
|
| 81 | simprr | |- ( ( ph /\ ( ( f e. dom S.1 /\ f oR <_ G ) /\ -. ( S.1 ` f ) <_ S ) ) -> -. ( S.1 ` f ) <_ S ) |
|
| 82 | 1 75 76 77 78 6 79 80 81 | itg2monolem3 | |- ( ( ph /\ ( ( f e. dom S.1 /\ f oR <_ G ) /\ -. ( S.1 ` f ) <_ S ) ) -> ( S.1 ` f ) <_ S ) |
| 83 | 82 | expr | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ G ) ) -> ( -. ( S.1 ` f ) <_ S -> ( S.1 ` f ) <_ S ) ) |
| 84 | 83 | pm2.18d | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ G ) ) -> ( S.1 ` f ) <_ S ) |
| 85 | 84 | expr | |- ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ G -> ( S.1 ` f ) <_ S ) ) |
| 86 | 85 | ralrimiva | |- ( ph -> A. f e. dom S.1 ( f oR <_ G -> ( S.1 ` f ) <_ S ) ) |
| 87 | itg2leub | |- ( ( G : RR --> ( 0 [,] +oo ) /\ S e. RR* ) -> ( ( S.2 ` G ) <_ S <-> A. f e. dom S.1 ( f oR <_ G -> ( S.1 ` f ) <_ S ) ) ) |
|
| 88 | 62 74 87 | syl2anc | |- ( ph -> ( ( S.2 ` G ) <_ S <-> A. f e. dom S.1 ( f oR <_ G -> ( S.1 ` f ) <_ S ) ) ) |
| 89 | 86 88 | mpbird | |- ( ph -> ( S.2 ` G ) <_ S ) |
| 90 | 26 | feq1d | |- ( n = m -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` m ) : RR --> ( 0 [,) +oo ) ) ) |
| 91 | 90 | cbvralvw | |- ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) <-> A. m e. NN ( F ` m ) : RR --> ( 0 [,) +oo ) ) |
| 92 | 43 91 | sylib | |- ( ph -> A. m e. NN ( F ` m ) : RR --> ( 0 [,) +oo ) ) |
| 93 | 92 | r19.21bi | |- ( ( ph /\ m e. NN ) -> ( F ` m ) : RR --> ( 0 [,) +oo ) ) |
| 94 | fss | |- ( ( ( F ` m ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` m ) : RR --> ( 0 [,] +oo ) ) |
|
| 95 | 93 65 94 | sylancl | |- ( ( ph /\ m e. NN ) -> ( F ` m ) : RR --> ( 0 [,] +oo ) ) |
| 96 | 62 | adantr | |- ( ( ph /\ m e. NN ) -> G : RR --> ( 0 [,] +oo ) ) |
| 97 | 13 21 37 | 3jca | |- ( ( ph /\ x e. RR ) -> ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR /\ ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) /\ E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) ) |
| 98 | 97 | adantlr | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR /\ ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) /\ E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) ) |
| 99 | 29 | ad2antlr | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) = ( ( F ` m ) ` x ) ) |
| 100 | 22 | adantlr | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN ) |
| 101 | simplr | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> m e. NN ) |
|
| 102 | fnfvelrn | |- ( ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN /\ m e. NN ) -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
|
| 103 | 100 101 102 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
| 104 | 99 103 | eqeltrrd | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> ( ( F ` m ) ` x ) e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ) |
| 105 | suprub | |- ( ( ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR /\ ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) /\ E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) /\ ( ( F ` m ) ` x ) e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ) -> ( ( F ` m ) ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
|
| 106 | 98 104 105 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> ( ( F ` m ) ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 107 | simpr | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> x e. RR ) |
|
| 108 | ltso | |- < Or RR |
|
| 109 | 108 | supex | |- sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. _V |
| 110 | 1 | fvmpt2 | |- ( ( x e. RR /\ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. _V ) -> ( G ` x ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 111 | 107 109 110 | sylancl | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> ( G ` x ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) |
| 112 | 106 111 | breqtrrd | |- ( ( ( ph /\ m e. NN ) /\ x e. RR ) -> ( ( F ` m ) ` x ) <_ ( G ` x ) ) |
| 113 | 112 | ralrimiva | |- ( ( ph /\ m e. NN ) -> A. x e. RR ( ( F ` m ) ` x ) <_ ( G ` x ) ) |
| 114 | fveq2 | |- ( x = z -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` z ) ) |
|
| 115 | fveq2 | |- ( x = z -> ( G ` x ) = ( G ` z ) ) |
|
| 116 | 114 115 | breq12d | |- ( x = z -> ( ( ( F ` m ) ` x ) <_ ( G ` x ) <-> ( ( F ` m ) ` z ) <_ ( G ` z ) ) ) |
| 117 | 116 | cbvralvw | |- ( A. x e. RR ( ( F ` m ) ` x ) <_ ( G ` x ) <-> A. z e. RR ( ( F ` m ) ` z ) <_ ( G ` z ) ) |
| 118 | 113 117 | sylib | |- ( ( ph /\ m e. NN ) -> A. z e. RR ( ( F ` m ) ` z ) <_ ( G ` z ) ) |
| 119 | 93 | ffnd | |- ( ( ph /\ m e. NN ) -> ( F ` m ) Fn RR ) |
| 120 | 38 1 | fmptd | |- ( ph -> G : RR --> RR ) |
| 121 | 120 | ffnd | |- ( ph -> G Fn RR ) |
| 122 | 121 | adantr | |- ( ( ph /\ m e. NN ) -> G Fn RR ) |
| 123 | reex | |- RR e. _V |
|
| 124 | 123 | a1i | |- ( ( ph /\ m e. NN ) -> RR e. _V ) |
| 125 | inidm | |- ( RR i^i RR ) = RR |
|
| 126 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ z e. RR ) -> ( ( F ` m ) ` z ) = ( ( F ` m ) ` z ) ) |
|
| 127 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ z e. RR ) -> ( G ` z ) = ( G ` z ) ) |
|
| 128 | 119 122 124 124 125 126 127 | ofrfval | |- ( ( ph /\ m e. NN ) -> ( ( F ` m ) oR <_ G <-> A. z e. RR ( ( F ` m ) ` z ) <_ ( G ` z ) ) ) |
| 129 | 118 128 | mpbird | |- ( ( ph /\ m e. NN ) -> ( F ` m ) oR <_ G ) |
| 130 | itg2le | |- ( ( ( F ` m ) : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ ( F ` m ) oR <_ G ) -> ( S.2 ` ( F ` m ) ) <_ ( S.2 ` G ) ) |
|
| 131 | 95 96 129 130 | syl3anc | |- ( ( ph /\ m e. NN ) -> ( S.2 ` ( F ` m ) ) <_ ( S.2 ` G ) ) |
| 132 | 131 | ralrimiva | |- ( ph -> A. m e. NN ( S.2 ` ( F ` m ) ) <_ ( S.2 ` G ) ) |
| 133 | 70 | ffnd | |- ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN ) |
| 134 | breq1 | |- ( z = ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` m ) -> ( z <_ ( S.2 ` G ) <-> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` m ) <_ ( S.2 ` G ) ) ) |
|
| 135 | 134 | ralrn | |- ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ ( S.2 ` G ) <-> A. m e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` m ) <_ ( S.2 ` G ) ) ) |
| 136 | 133 135 | syl | |- ( ph -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ ( S.2 ` G ) <-> A. m e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` m ) <_ ( S.2 ` G ) ) ) |
| 137 | 2fveq3 | |- ( n = m -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` m ) ) ) |
|
| 138 | eqid | |- ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) |
|
| 139 | fvex | |- ( S.2 ` ( F ` m ) ) e. _V |
|
| 140 | 137 138 139 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` m ) = ( S.2 ` ( F ` m ) ) ) |
| 141 | 140 | breq1d | |- ( m e. NN -> ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` m ) <_ ( S.2 ` G ) <-> ( S.2 ` ( F ` m ) ) <_ ( S.2 ` G ) ) ) |
| 142 | 141 | ralbiia | |- ( A. m e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` m ) <_ ( S.2 ` G ) <-> A. m e. NN ( S.2 ` ( F ` m ) ) <_ ( S.2 ` G ) ) |
| 143 | 136 142 | bitrdi | |- ( ph -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ ( S.2 ` G ) <-> A. m e. NN ( S.2 ` ( F ` m ) ) <_ ( S.2 ` G ) ) ) |
| 144 | 132 143 | mpbird | |- ( ph -> A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ ( S.2 ` G ) ) |
| 145 | supxrleub | |- ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* /\ ( S.2 ` G ) e. RR* ) -> ( sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) <_ ( S.2 ` G ) <-> A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ ( S.2 ` G ) ) ) |
|
| 146 | 71 64 145 | syl2anc | |- ( ph -> ( sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) <_ ( S.2 ` G ) <-> A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ ( S.2 ` G ) ) ) |
| 147 | 144 146 | mpbird | |- ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) <_ ( S.2 ` G ) ) |
| 148 | 6 147 | eqbrtrid | |- ( ph -> S <_ ( S.2 ` G ) ) |
| 149 | 64 74 89 148 | xrletrid | |- ( ph -> ( S.2 ` G ) = S ) |