This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013) (Revised by Mario Carneiro, 20-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexrn.1 | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| Assertion | ralrn | |- ( F Fn A -> ( A. x e. ran F ph <-> A. y e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexrn.1 | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| 2 | fvexd | |- ( ( F Fn A /\ y e. A ) -> ( F ` y ) e. _V ) |
|
| 3 | fvelrnb | |- ( F Fn A -> ( x e. ran F <-> E. y e. A ( F ` y ) = x ) ) |
|
| 4 | eqcom | |- ( ( F ` y ) = x <-> x = ( F ` y ) ) |
|
| 5 | 4 | rexbii | |- ( E. y e. A ( F ` y ) = x <-> E. y e. A x = ( F ` y ) ) |
| 6 | 3 5 | bitrdi | |- ( F Fn A -> ( x e. ran F <-> E. y e. A x = ( F ` y ) ) ) |
| 7 | 1 | adantl | |- ( ( F Fn A /\ x = ( F ` y ) ) -> ( ph <-> ps ) ) |
| 8 | 2 6 7 | ralxfr2d | |- ( F Fn A -> ( A. x e. ran F ph <-> A. y e. A ps ) ) |