This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elabrex.1 | |- B e. _V |
|
| Assertion | elabrex | |- ( x e. A -> B e. { y | E. x e. A y = B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabrex.1 | |- B e. _V |
|
| 2 | tru | |- T. |
|
| 3 | csbeq1a | |- ( x = z -> B = [_ z / x ]_ B ) |
|
| 4 | 3 | equcoms | |- ( z = x -> B = [_ z / x ]_ B ) |
| 5 | trud | |- ( z = x -> T. ) |
|
| 6 | 4 5 | 2thd | |- ( z = x -> ( B = [_ z / x ]_ B <-> T. ) ) |
| 7 | 6 | rspcev | |- ( ( x e. A /\ T. ) -> E. z e. A B = [_ z / x ]_ B ) |
| 8 | 2 7 | mpan2 | |- ( x e. A -> E. z e. A B = [_ z / x ]_ B ) |
| 9 | eqeq1 | |- ( y = B -> ( y = [_ z / x ]_ B <-> B = [_ z / x ]_ B ) ) |
|
| 10 | 9 | rexbidv | |- ( y = B -> ( E. z e. A y = [_ z / x ]_ B <-> E. z e. A B = [_ z / x ]_ B ) ) |
| 11 | 1 10 | elab | |- ( B e. { y | E. z e. A y = [_ z / x ]_ B } <-> E. z e. A B = [_ z / x ]_ B ) |
| 12 | 8 11 | sylibr | |- ( x e. A -> B e. { y | E. z e. A y = [_ z / x ]_ B } ) |
| 13 | nfv | |- F/ z y = B |
|
| 14 | nfcsb1v | |- F/_ x [_ z / x ]_ B |
|
| 15 | 14 | nfeq2 | |- F/ x y = [_ z / x ]_ B |
| 16 | 3 | eqeq2d | |- ( x = z -> ( y = B <-> y = [_ z / x ]_ B ) ) |
| 17 | 13 15 16 | cbvrexw | |- ( E. x e. A y = B <-> E. z e. A y = [_ z / x ]_ B ) |
| 18 | 17 | abbii | |- { y | E. x e. A y = B } = { y | E. z e. A y = [_ z / x ]_ B } |
| 19 | 12 18 | eleqtrrdi | |- ( x e. A -> B e. { y | E. x e. A y = B } ) |