This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fmulc.2 | |- ( ph -> F e. dom S.1 ) |
|
| i1fmulc.3 | |- ( ph -> A e. RR ) |
||
| Assertion | i1fmulc | |- ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fmulc.2 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | i1fmulc.3 | |- ( ph -> A e. RR ) |
|
| 3 | reex | |- RR e. _V |
|
| 4 | 3 | a1i | |- ( ( ph /\ A = 0 ) -> RR e. _V ) |
| 5 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 6 | 1 5 | syl | |- ( ph -> F : RR --> RR ) |
| 7 | 6 | adantr | |- ( ( ph /\ A = 0 ) -> F : RR --> RR ) |
| 8 | 2 | adantr | |- ( ( ph /\ A = 0 ) -> A e. RR ) |
| 9 | 0red | |- ( ( ph /\ A = 0 ) -> 0 e. RR ) |
|
| 10 | simplr | |- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> A = 0 ) |
|
| 11 | 10 | oveq1d | |- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = ( 0 x. x ) ) |
| 12 | mul02lem2 | |- ( x e. RR -> ( 0 x. x ) = 0 ) |
|
| 13 | 12 | adantl | |- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
| 14 | 11 13 | eqtrd | |- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = 0 ) |
| 15 | 4 7 8 9 14 | caofid2 | |- ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) ) |
| 16 | i1f0 | |- ( RR X. { 0 } ) e. dom S.1 |
|
| 17 | 15 16 | eqeltrdi | |- ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| 18 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 20 | fconst6g | |- ( A e. RR -> ( RR X. { A } ) : RR --> RR ) |
|
| 21 | 2 20 | syl | |- ( ph -> ( RR X. { A } ) : RR --> RR ) |
| 22 | 3 | a1i | |- ( ph -> RR e. _V ) |
| 23 | inidm | |- ( RR i^i RR ) = RR |
|
| 24 | 19 21 6 22 22 23 | off | |- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 25 | 24 | adantr | |- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 26 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 27 | 1 26 | syl | |- ( ph -> ran F e. Fin ) |
| 28 | ovex | |- ( A x. y ) e. _V |
|
| 29 | eqid | |- ( y e. ran F |-> ( A x. y ) ) = ( y e. ran F |-> ( A x. y ) ) |
|
| 30 | 28 29 | fnmpti | |- ( y e. ran F |-> ( A x. y ) ) Fn ran F |
| 31 | dffn4 | |- ( ( y e. ran F |-> ( A x. y ) ) Fn ran F <-> ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) ) ) |
|
| 32 | 30 31 | mpbi | |- ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) ) |
| 33 | fofi | |- ( ( ran F e. Fin /\ ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) ) ) -> ran ( y e. ran F |-> ( A x. y ) ) e. Fin ) |
|
| 34 | 27 32 33 | sylancl | |- ( ph -> ran ( y e. ran F |-> ( A x. y ) ) e. Fin ) |
| 35 | id | |- ( w e. ran F -> w e. ran F ) |
|
| 36 | elsni | |- ( x e. { A } -> x = A ) |
|
| 37 | 36 | oveq1d | |- ( x e. { A } -> ( x x. w ) = ( A x. w ) ) |
| 38 | oveq2 | |- ( y = w -> ( A x. y ) = ( A x. w ) ) |
|
| 39 | 38 | rspceeqv | |- ( ( w e. ran F /\ ( x x. w ) = ( A x. w ) ) -> E. y e. ran F ( x x. w ) = ( A x. y ) ) |
| 40 | 35 37 39 | syl2anr | |- ( ( x e. { A } /\ w e. ran F ) -> E. y e. ran F ( x x. w ) = ( A x. y ) ) |
| 41 | ovex | |- ( x x. w ) e. _V |
|
| 42 | eqeq1 | |- ( z = ( x x. w ) -> ( z = ( A x. y ) <-> ( x x. w ) = ( A x. y ) ) ) |
|
| 43 | 42 | rexbidv | |- ( z = ( x x. w ) -> ( E. y e. ran F z = ( A x. y ) <-> E. y e. ran F ( x x. w ) = ( A x. y ) ) ) |
| 44 | 41 43 | elab | |- ( ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } <-> E. y e. ran F ( x x. w ) = ( A x. y ) ) |
| 45 | 40 44 | sylibr | |- ( ( x e. { A } /\ w e. ran F ) -> ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } ) |
| 46 | 45 | adantl | |- ( ( ph /\ ( x e. { A } /\ w e. ran F ) ) -> ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } ) |
| 47 | fconstg | |- ( A e. RR -> ( RR X. { A } ) : RR --> { A } ) |
|
| 48 | 2 47 | syl | |- ( ph -> ( RR X. { A } ) : RR --> { A } ) |
| 49 | 6 | ffnd | |- ( ph -> F Fn RR ) |
| 50 | dffn3 | |- ( F Fn RR <-> F : RR --> ran F ) |
|
| 51 | 49 50 | sylib | |- ( ph -> F : RR --> ran F ) |
| 52 | 46 48 51 22 22 23 | off | |- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> { z | E. y e. ran F z = ( A x. y ) } ) |
| 53 | 52 | frnd | |- ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ { z | E. y e. ran F z = ( A x. y ) } ) |
| 54 | 29 | rnmpt | |- ran ( y e. ran F |-> ( A x. y ) ) = { z | E. y e. ran F z = ( A x. y ) } |
| 55 | 53 54 | sseqtrrdi | |- ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ ran ( y e. ran F |-> ( A x. y ) ) ) |
| 56 | 34 55 | ssfid | |- ( ph -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
| 57 | 56 | adantr | |- ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
| 58 | 24 | frnd | |- ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ RR ) |
| 59 | 58 | ssdifssd | |- ( ph -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR ) |
| 60 | 59 | adantr | |- ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR ) |
| 61 | 60 | sselda | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y e. RR ) |
| 62 | 1 2 | i1fmulclem | |- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) = ( `' F " { ( y / A ) } ) ) |
| 63 | 61 62 | syldan | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) = ( `' F " { ( y / A ) } ) ) |
| 64 | i1fima | |- ( F e. dom S.1 -> ( `' F " { ( y / A ) } ) e. dom vol ) |
|
| 65 | 1 64 | syl | |- ( ph -> ( `' F " { ( y / A ) } ) e. dom vol ) |
| 66 | 65 | ad2antrr | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' F " { ( y / A ) } ) e. dom vol ) |
| 67 | 63 66 | eqeltrd | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) e. dom vol ) |
| 68 | 63 | fveq2d | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) ) = ( vol ` ( `' F " { ( y / A ) } ) ) ) |
| 69 | 1 | ad2antrr | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> F e. dom S.1 ) |
| 70 | 2 | ad2antrr | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. RR ) |
| 71 | simplr | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 ) |
|
| 72 | 61 70 71 | redivcld | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) e. RR ) |
| 73 | 61 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y e. CC ) |
| 74 | 70 | recnd | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
| 75 | eldifsni | |- ( y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> y =/= 0 ) |
|
| 76 | 75 | adantl | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y =/= 0 ) |
| 77 | 73 74 76 71 | divne0d | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) =/= 0 ) |
| 78 | eldifsn | |- ( ( y / A ) e. ( RR \ { 0 } ) <-> ( ( y / A ) e. RR /\ ( y / A ) =/= 0 ) ) |
|
| 79 | 72 77 78 | sylanbrc | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) e. ( RR \ { 0 } ) ) |
| 80 | i1fima2sn | |- ( ( F e. dom S.1 /\ ( y / A ) e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { ( y / A ) } ) ) e. RR ) |
|
| 81 | 69 79 80 | syl2anc | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( y / A ) } ) ) e. RR ) |
| 82 | 68 81 | eqeltrd | |- ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) ) e. RR ) |
| 83 | 25 57 67 82 | i1fd | |- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| 84 | 17 83 | pm2.61dane | |- ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |