This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable of a restricted universal quantifier using implicit substitution. Version of cbvralv with a disjoint variable condition, which does not require ax-10 , ax-11 , ax-12 , ax-13 . (Contributed by NM, 28-Jan-1997) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvralvw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | cbvralvw | |- ( A. x e. A ph <-> A. y e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralvw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 3 | 2 1 | imbi12d | |- ( x = y -> ( ( x e. A -> ph ) <-> ( y e. A -> ps ) ) ) |
| 4 | 3 | cbvalvw | |- ( A. x ( x e. A -> ph ) <-> A. y ( y e. A -> ps ) ) |
| 5 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 6 | df-ral | |- ( A. y e. A ps <-> A. y ( y e. A -> ps ) ) |
|
| 7 | 4 5 6 | 3bitr4i | |- ( A. x e. A ph <-> A. y e. A ps ) |