This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplbas2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplbas2.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | ||
| mplbas2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mplbas2.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑆 ) | ||
| mplbas2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplbas2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| Assertion | mplbas2 | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplbas2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplbas2.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 3 | mplbas2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 4 | mplbas2.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑆 ) | |
| 5 | mplbas2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplbas2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 7 | 2 5 6 | psrassa | ⊢ ( 𝜑 → 𝑆 ∈ AssAlg ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 10 | 1 2 8 9 | mplbasss | ⊢ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 12 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 13 | 6 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 14 | 2 3 9 5 13 | mvrf | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑆 ) ) |
| 15 | 14 | ffnd | ⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 16 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 17 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 19 | 1 3 8 16 17 18 | mvrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
| 20 | 19 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) |
| 21 | ffnfv | ⊢ ( 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ ( Base ‘ 𝑃 ) ) ) | |
| 22 | 15 20 21 | sylanbrc | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) |
| 23 | 22 | frnd | ⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) |
| 24 | 4 9 | aspss | ⊢ ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ 𝑆 ) ∧ ran 𝑉 ⊆ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) |
| 25 | 7 11 23 24 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) ) |
| 26 | 2 1 8 5 13 | mplsubrg | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| 27 | 2 1 8 5 13 | mpllss | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 28 | eqid | ⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) | |
| 29 | 4 9 28 | aspid | ⊢ ( ( 𝑆 ∈ AssAlg ∧ ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) ) |
| 30 | 7 26 27 29 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ‘ ( Base ‘ 𝑃 ) ) = ( Base ‘ 𝑃 ) ) |
| 31 | 25 30 | sseqtrd | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) |
| 32 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 33 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 34 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 35 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝐼 ∈ 𝑊 ) |
| 36 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 37 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 ∈ Ring ) |
| 38 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( Base ‘ 𝑃 ) ) | |
| 39 | 1 32 33 34 35 8 36 37 38 | mplcoe1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ) |
| 40 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 41 | 1 5 13 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 42 | ringabl | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Abel ) | |
| 43 | 41 42 | syl | ⊢ ( 𝜑 → 𝑃 ∈ Abel ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑃 ∈ Abel ) |
| 45 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 46 | 45 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 47 | 46 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 48 | 14 | frnd | ⊢ ( 𝜑 → ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) |
| 49 | 4 9 | aspsubrg | ⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| 50 | 7 48 49 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| 51 | 1 2 8 | mplval2 | ⊢ 𝑃 = ( 𝑆 ↾s ( Base ‘ 𝑃 ) ) |
| 52 | 51 | subsubrg | ⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
| 53 | 26 52 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
| 54 | 50 31 53 | mpbir2and | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ) |
| 55 | subrgsubg | ⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) | |
| 56 | 54 55 | syl | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubGrp ‘ 𝑃 ) ) |
| 58 | 1 5 13 | mpllmodd | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑃 ∈ LMod ) |
| 60 | 4 9 28 | asplss | ⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 61 | 7 48 60 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 62 | 2 5 13 | psrlmod | ⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
| 63 | eqid | ⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) | |
| 64 | 51 28 63 | lsslss | ⊢ ( ( 𝑆 ∈ LMod ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
| 65 | 62 27 64 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ↔ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑆 ) ∧ ( 𝐴 ‘ ran 𝑉 ) ⊆ ( Base ‘ 𝑃 ) ) ) ) |
| 66 | 61 31 65 | mpbir2and | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) |
| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) |
| 68 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 69 | 1 68 8 32 38 | mplelf | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 70 | 69 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 71 | 1 35 37 | mplsca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 72 | 71 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 73 | 72 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 74 | 70 73 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 75 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝐼 ∈ 𝑊 ) |
| 76 | eqid | ⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) | |
| 77 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | |
| 78 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CRing ) |
| 79 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) | |
| 80 | 1 32 33 34 75 76 77 3 78 79 | mplcoe2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ) |
| 81 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 82 | 76 81 | ringidval | ⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 83 | 1 | mplcrng | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ CRing ) |
| 84 | 5 6 83 | syl2anc | ⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 85 | 76 | crngmgp | ⊢ ( 𝑃 ∈ CRing → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
| 86 | 84 85 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
| 87 | 86 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( mulGrp ‘ 𝑃 ) ∈ CMnd ) |
| 88 | 54 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ) |
| 89 | 76 | subrgsubm | ⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
| 90 | 88 89 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑃 ) ) ) |
| 91 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → 𝜑 ) | |
| 92 | 32 | psrbag | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) ) |
| 93 | 35 92 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) ) |
| 94 | 93 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑘 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑘 “ ℕ ) ∈ Fin ) ) |
| 95 | 94 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 96 | 95 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ) |
| 97 | 4 9 | aspssid | ⊢ ( ( 𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ ( Base ‘ 𝑆 ) ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
| 98 | 7 48 97 | syl2anc | ⊢ ( 𝜑 → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
| 99 | 98 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ran 𝑉 ⊆ ( 𝐴 ‘ ran 𝑉 ) ) |
| 100 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑉 Fn 𝐼 ) |
| 101 | fnfvelrn | ⊢ ( ( 𝑉 Fn 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ran 𝑉 ) | |
| 102 | 100 101 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ran 𝑉 ) |
| 103 | 99 102 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 104 | 76 8 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 105 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 106 | 76 105 | mgpplusg | ⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 107 | 105 | subrgmcl | ⊢ ( ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 108 | 54 107 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 ‘ ran 𝑉 ) ∧ 𝑣 ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( 𝑢 ( .r ‘ 𝑃 ) 𝑣 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 109 | 81 | subrg1cl | ⊢ ( ( 𝐴 ‘ ran 𝑉 ) ∈ ( SubRing ‘ 𝑃 ) → ( 1r ‘ 𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 110 | 54 109 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 111 | 104 77 106 86 31 108 82 110 | mulgnn0subcl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑉 ‘ 𝑧 ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 112 | 91 96 103 111 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 113 | 112 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) : 𝐼 ⟶ ( 𝐴 ‘ ran 𝑉 ) ) |
| 114 | 5 | mptexd | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ) |
| 115 | 114 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ) |
| 116 | funmpt | ⊢ Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) | |
| 117 | 116 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) |
| 118 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 1r ‘ 𝑃 ) ∈ V ) | |
| 119 | 94 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ◡ 𝑘 “ ℕ ) ∈ Fin ) |
| 120 | elrabi | ⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } → 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) | |
| 121 | elmapi | ⊢ ( 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) → 𝑘 : 𝐼 ⟶ ℕ0 ) | |
| 122 | 121 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 123 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑊 ) |
| 124 | fcdmnn0supp | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑘 : 𝐼 ⟶ ℕ0 ) → ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) ) | |
| 125 | 123 122 124 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) ) |
| 126 | eqimss | ⊢ ( ( 𝑘 supp 0 ) = ( ◡ 𝑘 “ ℕ ) → ( 𝑘 supp 0 ) ⊆ ( ◡ 𝑘 “ ℕ ) ) | |
| 127 | 125 126 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → ( 𝑘 supp 0 ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
| 128 | c0ex | ⊢ 0 ∈ V | |
| 129 | 128 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) → 0 ∈ V ) |
| 130 | 122 127 123 129 | suppssr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( ℕ0 ↑m 𝐼 ) ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑘 ‘ 𝑧 ) = 0 ) |
| 131 | 120 130 | sylanl2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑘 ‘ 𝑧 ) = 0 ) |
| 132 | 131 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) |
| 133 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝐼 ∈ 𝑊 ) |
| 134 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝑅 ∈ Ring ) |
| 135 | eldifi | ⊢ ( 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) → 𝑧 ∈ 𝐼 ) | |
| 136 | 135 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → 𝑧 ∈ 𝐼 ) |
| 137 | 1 3 8 133 134 136 | mvrcl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) ) |
| 138 | 104 82 77 | mulg0 | ⊢ ( ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
| 139 | 137 138 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
| 140 | 132 139 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑧 ∈ ( 𝐼 ∖ ( ◡ 𝑘 “ ℕ ) ) ) → ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) = ( 1r ‘ 𝑃 ) ) |
| 141 | 140 75 | suppss2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑘 “ ℕ ) ) |
| 142 | suppssfifsupp | ⊢ ( ( ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∈ V ∧ Fun ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ∧ ( 1r ‘ 𝑃 ) ∈ V ) ∧ ( ( ◡ 𝑘 “ ℕ ) ∈ Fin ∧ ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑘 “ ℕ ) ) ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) | |
| 143 | 115 117 118 119 141 142 | syl32anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
| 144 | 82 87 75 90 113 143 | gsumsubmcl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑃 ) Σg ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( 𝑉 ‘ 𝑧 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 145 | 80 144 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 146 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 147 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 148 | 146 36 147 63 | lssvscl | ⊢ ( ( ( 𝑃 ∈ LMod ∧ ( 𝐴 ‘ ran 𝑉 ) ∈ ( LSubSp ‘ 𝑃 ) ) ∧ ( ( 𝑥 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 149 | 59 67 74 145 148 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 150 | 149 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( 𝐴 ‘ ran 𝑉 ) ) |
| 151 | 45 | mptrabex | ⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V |
| 152 | funmpt | ⊢ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) | |
| 153 | fvex | ⊢ ( 0g ‘ 𝑃 ) ∈ V | |
| 154 | 151 152 153 | 3pm3.2i | ⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
| 155 | 154 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
| 156 | 1 2 9 33 8 | mplelbas | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 finSupp ( 0g ‘ 𝑅 ) ) ) |
| 157 | 156 | simprbi | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑃 ) → 𝑥 finSupp ( 0g ‘ 𝑅 ) ) |
| 158 | 157 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 finSupp ( 0g ‘ 𝑅 ) ) |
| 159 | 158 | fsuppimpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
| 160 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) | |
| 161 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 162 | 69 160 47 161 | suppssr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑥 ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) ) |
| 163 | 71 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 164 | 163 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 165 | 162 164 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑥 ‘ 𝑘 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 166 | 165 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 167 | eldifi | ⊢ ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) → 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) | |
| 168 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ Ring ) |
| 169 | 1 8 33 34 32 75 168 79 | mplmon | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 170 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | |
| 171 | 8 146 36 170 40 | lmod0vs | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 172 | 59 169 171 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 173 | 167 172 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 174 | 166 173 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 175 | 174 47 | suppss2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) |
| 176 | suppssfifsupp | ⊢ ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑥 supp ( 0g ‘ 𝑅 ) ) ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) | |
| 177 | 155 159 175 176 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 178 | 40 44 47 57 150 177 | gsumsubgcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑃 Σg ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( ( 𝑥 ‘ 𝑘 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = 𝑘 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 179 | 39 178 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑃 ) ) → 𝑥 ∈ ( 𝐴 ‘ ran 𝑉 ) ) |
| 180 | 31 179 | eqelssd | ⊢ ( 𝜑 → ( 𝐴 ‘ ran 𝑉 ) = ( Base ‘ 𝑃 ) ) |