This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsca.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplsca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| mplsca.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| Assertion | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsca.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplsca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | mplsca.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 4 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 5 | 4 2 3 | psrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 6 | fvex | ⊢ ( Base ‘ 𝑃 ) ∈ V | |
| 7 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 8 | 1 4 7 | mplval2 | ⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 9 | eqid | ⊢ ( Scalar ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Scalar ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 10 | 8 9 | resssca | ⊢ ( ( Base ‘ 𝑃 ) ∈ V → ( Scalar ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Scalar ‘ 𝑃 ) ) |
| 11 | 6 10 | ax-mp | ⊢ ( Scalar ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Scalar ‘ 𝑃 ) |
| 12 | 5 11 | eqtrdi | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |