This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubrg.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| Assertion | subsubrg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubrg.s | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrgrcl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 5 | 4 | subrgss | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 7 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 9 | 6 8 | sseqtrrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ 𝐴 ) |
| 10 | 1 | oveq1i | ⊢ ( 𝑆 ↾s 𝐵 ) = ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) |
| 11 | ressabs | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) | |
| 12 | 10 11 | eqtrid | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 13 | 9 12 | syldan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 14 | eqid | ⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) | |
| 15 | 14 | subrgring | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 17 | 13 16 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 19 | 18 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 21 | 9 20 | sstrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
| 22 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 23 | 1 22 | subrg1 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 25 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 26 | 25 | subrg1cl | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 28 | 24 27 | eqeltrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 29 | 21 28 | jca | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) |
| 30 | 18 22 | issubrg | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) ) |
| 31 | 3 17 29 30 | syl21anbrc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 32 | 31 9 | jca | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) |
| 33 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 34 | 33 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝑆 ∈ Ring ) |
| 35 | 12 | adantrl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
| 36 | eqid | ⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) | |
| 37 | 36 | subrgring | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
| 38 | 37 | ad2antrl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
| 39 | 35 38 | eqeltrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
| 40 | simprr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ 𝐴 ) | |
| 41 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 42 | 40 41 | sseqtrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
| 43 | 23 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 44 | 22 | subrg1cl | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 45 | 44 | ad2antrl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 46 | 43 45 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
| 47 | 42 46 | jca | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) |
| 48 | 4 25 | issubrg | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( ( 𝑆 ∈ Ring ∧ ( 𝑆 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) ) |
| 49 | 34 39 47 48 | syl21anbrc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
| 50 | 32 49 | impbida | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |