This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebraic span of a subalgebra is itself. ( spanid analog.) (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| aspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| aspval.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | aspid | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝐴 ‘ 𝑆 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| 2 | aspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | aspval.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 4 | simp1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → 𝑊 ∈ AssAlg ) | |
| 5 | 2 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ 𝑉 ) |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → 𝑆 ⊆ 𝑉 ) |
| 7 | 1 2 3 | aspval | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 8 | 4 6 7 | syl2anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 9 | 3simpc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) ) | |
| 10 | elin | ⊢ ( 𝑆 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ↔ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → 𝑆 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ) |
| 12 | intmin | ⊢ ( 𝑆 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } = 𝑆 ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } = 𝑆 ) |
| 14 | 8 13 | eqtrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝐴 ‘ 𝑆 ) = 𝑆 ) |