This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltbval.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | |
| ltbval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| ltbval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ltbval.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) | ||
| Assertion | ltbval | ⊢ ( 𝜑 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltbval.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | |
| 2 | ltbval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 3 | ltbval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | ltbval.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) | |
| 5 | elex | ⊢ ( 𝑇 ∈ 𝑊 → 𝑇 ∈ V ) | |
| 6 | elex | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ V ) | |
| 7 | simpr | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) | |
| 8 | 7 | oveq2d | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 9 | rabeq | ⊢ ( ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 11 | 10 2 | eqtr4di | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
| 12 | 11 | sseq2d | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 ) ) |
| 13 | simpl | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → 𝑟 = 𝑇 ) | |
| 14 | 13 | breqd | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( 𝑧 𝑟 𝑤 ↔ 𝑧 𝑇 𝑤 ) ) |
| 15 | 14 | imbi1d | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 16 | 7 15 | raleqbidv | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 17 | 16 | anbi2d | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 18 | 7 17 | rexeqbidv | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 19 | 12 18 | anbi12d | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → ( ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) ) |
| 20 | 19 | opabbidv | ⊢ ( ( 𝑟 = 𝑇 ∧ 𝑖 = 𝐼 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| 21 | df-ltbag | ⊢ <bag = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) | |
| 22 | vex | ⊢ 𝑥 ∈ V | |
| 23 | vex | ⊢ 𝑦 ∈ V | |
| 24 | 22 23 | prss | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐷 ) |
| 25 | 24 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 26 | 25 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } |
| 27 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 28 | 2 27 | rabex2 | ⊢ 𝐷 ∈ V |
| 29 | 28 28 | xpex | ⊢ ( 𝐷 × 𝐷 ) ∈ V |
| 30 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ⊆ ( 𝐷 × 𝐷 ) | |
| 31 | 29 30 | ssexi | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ∈ V |
| 32 | 26 31 | eqeltrri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ∈ V |
| 33 | 20 21 32 | ovmpoa | ⊢ ( ( 𝑇 ∈ V ∧ 𝐼 ∈ V ) → ( 𝑇 <bag 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| 34 | 5 6 33 | syl2an | ⊢ ( ( 𝑇 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉 ) → ( 𝑇 <bag 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| 35 | 4 3 34 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 <bag 𝐼 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| 36 | 1 35 | eqtrid | ⊢ ( 𝜑 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐷 ∧ ∃ 𝑧 ∈ 𝐼 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐼 ( 𝑧 𝑇 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |