This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Proof shortened by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| mplsubg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| mplsubg.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| mplsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mpllss.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | mpllss | ⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mplsubg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | mplsubg.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 4 | mplsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | mpllss.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 8 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 9 | 0fi | ⊢ ∅ ∈ Fin | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ∅ ∈ Fin ) |
| 11 | unfi | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝑥 ∪ 𝑦 ) ∈ Fin ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ 𝑦 ∈ Fin ) ) → ( 𝑥 ∪ 𝑦 ) ∈ Fin ) |
| 13 | ssfi | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ∈ Fin ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ Fin ) |
| 15 | 1 2 3 4 | mplsubglem2 | ⊢ ( 𝜑 → 𝑈 = { 𝑔 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝑔 supp ( 0g ‘ 𝑅 ) ) ∈ Fin } ) |
| 16 | 1 6 7 8 4 10 12 14 15 5 | mpllsslem | ⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑆 ) ) |