This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplcoe1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplcoe1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplcoe1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplcoe1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mplcoe1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplcoe1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplcoe1.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| mplcoe1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplcoe1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | mplcoe1 | ⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplcoe1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplcoe1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mplcoe1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplcoe1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mplcoe1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplcoe1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 7 | mplcoe1.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 8 | mplcoe1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 9 | mplcoe1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 1 10 6 2 9 | mplelf | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 12 | 11 | feqmptd | ⊢ ( 𝜑 → 𝑋 = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
| 13 | iftrue | ⊢ ( 𝑦 ∈ ( 𝑋 supp 0 ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝑋 supp 0 ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 15 | eldif | ⊢ ( 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) | |
| 16 | ssidd | ⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ ( 𝑋 supp 0 ) ) | |
| 17 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 18 | 2 17 | rabex2 | ⊢ 𝐷 ∈ V |
| 19 | 18 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 20 | 3 | fvexi | ⊢ 0 ∈ V |
| 21 | 20 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 22 | 11 16 19 21 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑦 ) = 0 ) |
| 23 | 22 | ifeq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , ( 𝑋 ‘ 𝑦 ) ) = if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 24 | ifid | ⊢ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , ( 𝑋 ‘ 𝑦 ) ) = ( 𝑋 ‘ 𝑦 ) | |
| 25 | 23 24 | eqtr3di | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 26 | 15 25 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 27 | 26 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ ( 𝑋 supp 0 ) ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 28 | 14 27 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 29 | 28 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑦 ) ) ) |
| 30 | 12 29 | eqtr4d | ⊢ ( 𝜑 → 𝑋 = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 31 | suppssdm | ⊢ ( 𝑋 supp 0 ) ⊆ dom 𝑋 | |
| 32 | 31 11 | fssdm | ⊢ ( 𝜑 → ( 𝑋 supp 0 ) ⊆ 𝐷 ) |
| 33 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 34 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 35 | 1 33 34 3 6 | mplelbas | ⊢ ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑋 finSupp 0 ) ) |
| 36 | 35 | simprbi | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 finSupp 0 ) |
| 37 | 9 36 | syl | ⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
| 38 | 37 | fsuppimpd | ⊢ ( 𝜑 → ( 𝑋 supp 0 ) ∈ Fin ) |
| 39 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐷 ↔ ∅ ⊆ 𝐷 ) ) | |
| 40 | mpteq1 | ⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ∅ ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) | |
| 41 | mpt0 | ⊢ ( 𝑘 ∈ ∅ ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ∅ | |
| 42 | 40 41 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ∅ ) |
| 43 | 42 | oveq2d | ⊢ ( 𝑤 = ∅ → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ∅ ) ) |
| 44 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 45 | 44 | gsum0 | ⊢ ( 𝑃 Σg ∅ ) = ( 0g ‘ 𝑃 ) |
| 46 | 43 45 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 47 | noel | ⊢ ¬ 𝑦 ∈ ∅ | |
| 48 | eleq2 | ⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ∅ ) ) | |
| 49 | 47 48 | mtbiri | ⊢ ( 𝑤 = ∅ → ¬ 𝑦 ∈ 𝑤 ) |
| 50 | 49 | iffalsed | ⊢ ( 𝑤 = ∅ → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
| 51 | 50 | mpteq2dv | ⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) |
| 52 | 46 51 | eqeq12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) |
| 53 | 39 52 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) ) |
| 54 | 53 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) ) ) |
| 55 | sseq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐷 ↔ 𝑥 ⊆ 𝐷 ) ) | |
| 56 | mpteq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) | |
| 57 | 56 | oveq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 58 | eleq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 59 | 58 | ifbid | ⊢ ( 𝑤 = 𝑥 → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 60 | 59 | mpteq2dv | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 61 | 57 60 | eqeq12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 62 | 55 61 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 63 | 62 | imbi2d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 64 | sseq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐷 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) | |
| 65 | mpteq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) | |
| 66 | 65 | oveq2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 67 | eleq2 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) ) | |
| 68 | 67 | ifbid | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 69 | 68 | mpteq2dv | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 70 | 66 69 | eqeq12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 71 | 64 70 | imbi12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 72 | 71 | imbi2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 73 | sseq1 | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑤 ⊆ 𝐷 ↔ ( 𝑋 supp 0 ) ⊆ 𝐷 ) ) | |
| 74 | mpteq1 | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) | |
| 75 | 74 | oveq2d | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 76 | eleq2 | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑋 supp 0 ) ) ) | |
| 77 | 76 | ifbid | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 78 | 77 | mpteq2dv | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 79 | 75 78 | eqeq12d | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 80 | 73 79 | imbi12d | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ↔ ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 81 | 80 | imbi2d | ⊢ ( 𝑤 = ( 𝑋 supp 0 ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑤 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 82 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 83 | 8 82 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 84 | 1 2 3 44 5 83 | mpl0 | ⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 0 } ) ) |
| 85 | fconstmpt | ⊢ ( 𝐷 × { 0 } ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) | |
| 86 | 84 85 | eqtrdi | ⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) |
| 87 | 86 | a1d | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐷 → ( 0g ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ 0 ) ) ) |
| 88 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) | |
| 89 | sstr2 | ⊢ ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → 𝑥 ⊆ 𝐷 ) ) | |
| 90 | 88 89 | ax-mp | ⊢ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → 𝑥 ⊆ 𝐷 ) |
| 91 | 90 | imim1i | ⊢ ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 92 | oveq1 | ⊢ ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) | |
| 93 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 94 | 1 5 8 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 95 | ringcmn | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) | |
| 96 | 94 95 | syl | ⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 97 | 96 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑃 ∈ CMnd ) |
| 98 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑥 ∈ Fin ) | |
| 99 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) | |
| 100 | 99 | unssad | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑥 ⊆ 𝐷 ) |
| 101 | 100 | sselda | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐷 ) |
| 102 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
| 103 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 104 | 1 102 103 | mpllmodd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑃 ∈ LMod ) |
| 105 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 106 | 1 5 8 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 107 | 106 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 108 | 107 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 109 | 105 108 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 110 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑘 ∈ 𝐷 ) | |
| 111 | 1 6 3 4 2 102 103 110 | mplmon | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) |
| 112 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 113 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 114 | 6 112 7 113 | lmodvscl | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 115 | 104 109 111 114 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 116 | 115 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 117 | 101 116 | syldan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑘 ∈ 𝑥 ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 118 | vex | ⊢ 𝑧 ∈ V | |
| 119 | 118 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑧 ∈ V ) |
| 120 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ¬ 𝑧 ∈ 𝑥 ) | |
| 121 | 1 5 8 | mpllmodd | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 122 | 121 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑃 ∈ LMod ) |
| 123 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 124 | 99 | unssbd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → { 𝑧 } ⊆ 𝐷 ) |
| 125 | 118 | snss | ⊢ ( 𝑧 ∈ 𝐷 ↔ { 𝑧 } ⊆ 𝐷 ) |
| 126 | 124 125 | sylibr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑧 ∈ 𝐷 ) |
| 127 | 123 126 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 128 | 106 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 129 | 128 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 130 | 127 129 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 131 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
| 132 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 ∈ Ring ) |
| 133 | 1 6 3 4 2 131 132 126 | mplmon | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ 𝐵 ) |
| 134 | 6 112 7 113 | lmodvscl | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 135 | 122 130 133 134 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ∈ 𝐵 ) |
| 136 | fveq2 | ⊢ ( 𝑘 = 𝑧 → ( 𝑋 ‘ 𝑘 ) = ( 𝑋 ‘ 𝑧 ) ) | |
| 137 | equequ2 | ⊢ ( 𝑘 = 𝑧 → ( 𝑦 = 𝑘 ↔ 𝑦 = 𝑧 ) ) | |
| 138 | 137 | ifbid | ⊢ ( 𝑘 = 𝑧 → if ( 𝑦 = 𝑘 , 1 , 0 ) = if ( 𝑦 = 𝑧 , 1 , 0 ) ) |
| 139 | 138 | mpteq2dv | ⊢ ( 𝑘 = 𝑧 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) |
| 140 | 136 139 | oveq12d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
| 141 | 6 93 97 98 117 119 120 135 140 | gsumunsn | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 142 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 143 | 123 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 144 | 10 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 145 | 8 144 | syl | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 146 | 145 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 147 | 143 146 | ifcld | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 148 | 147 | fmpttd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 149 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 150 | 149 18 | elmap | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 151 | 148 150 | sylibr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 152 | 33 10 2 34 131 | psrbas | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 153 | 151 152 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 154 | 18 | mptex | ⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V |
| 155 | funmpt | ⊢ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) | |
| 156 | 154 155 20 | 3pm3.2i | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) |
| 157 | 156 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) ) |
| 158 | eldifn | ⊢ ( 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) → ¬ 𝑦 ∈ 𝑥 ) | |
| 159 | 158 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
| 160 | 159 | iffalsed | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝐷 ∖ 𝑥 ) ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
| 161 | 18 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝐷 ∈ V ) |
| 162 | 160 161 | suppss2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) |
| 163 | suppssfifsupp | ⊢ ( ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ V ∧ Fun ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∧ 0 ∈ V ) ∧ ( 𝑥 ∈ Fin ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) | |
| 164 | 157 98 162 163 | syl12anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) |
| 165 | 1 33 34 3 6 | mplelbas | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ 𝐵 ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) finSupp 0 ) ) |
| 166 | 153 164 165 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∈ 𝐵 ) |
| 167 | 1 6 142 93 166 135 | mpladd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∘f ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 168 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ∈ V ) | |
| 169 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) | |
| 170 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 171 | 1 7 10 6 170 2 127 133 | mplvsca | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
| 172 | 127 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 173 | 10 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 174 | 173 144 | ifcld | ⊢ ( 𝑅 ∈ Ring → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 175 | 8 174 | syl | ⊢ ( 𝜑 → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 176 | 175 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → if ( 𝑦 = 𝑧 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 177 | fconstmpt | ⊢ ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑧 ) ) | |
| 178 | 177 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) = ( 𝑦 ∈ 𝐷 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
| 179 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) | |
| 180 | 161 172 176 178 179 | offval2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝐷 × { ( 𝑋 ‘ 𝑧 ) } ) ∘f ( .r ‘ 𝑅 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
| 181 | 171 180 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) |
| 182 | 161 147 168 169 181 | offval2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ∘f ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 183 | 132 82 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → 𝑅 ∈ Grp ) |
| 184 | 10 142 3 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
| 185 | 183 127 184 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
| 186 | 185 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
| 187 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 ∈ { 𝑧 } ) | |
| 188 | velsn | ⊢ ( 𝑦 ∈ { 𝑧 } ↔ 𝑦 = 𝑧 ) | |
| 189 | 187 188 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 = 𝑧 ) |
| 190 | 189 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 𝑋 ‘ 𝑦 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 191 | 186 190 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
| 192 | 120 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑧 ∈ 𝑥 ) |
| 193 | 189 192 | eqneltrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 ∈ 𝑥 ) |
| 194 | 193 | iffalsed | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) = 0 ) |
| 195 | 189 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 = 𝑧 , 1 , 0 ) = 1 ) |
| 196 | 195 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 197 | 10 170 4 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 198 | 132 127 197 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 199 | 198 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 200 | 196 199 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( 𝑋 ‘ 𝑧 ) ) |
| 201 | 194 200 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( 0 ( +g ‘ 𝑅 ) ( 𝑋 ‘ 𝑧 ) ) ) |
| 202 | elun2 | ⊢ ( 𝑦 ∈ { 𝑧 } → 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) | |
| 203 | 202 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
| 204 | 203 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = ( 𝑋 ‘ 𝑦 ) ) |
| 205 | 191 201 204 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 206 | 83 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → 𝑅 ∈ Grp ) |
| 207 | 10 142 3 | grprid | ⊢ ( ( 𝑅 ∈ Grp ∧ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 208 | 206 147 207 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 209 | 208 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 210 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 ∈ { 𝑧 } ) | |
| 211 | 210 188 | sylnib | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ¬ 𝑦 = 𝑧 ) |
| 212 | 211 | iffalsed | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 = 𝑧 , 1 , 0 ) = 0 ) |
| 213 | 212 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) ) |
| 214 | 10 170 3 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 215 | 132 127 214 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 216 | 215 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 217 | 213 216 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) = 0 ) |
| 218 | 217 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) 0 ) ) |
| 219 | elun | ⊢ ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ 𝑥 ∨ 𝑦 ∈ { 𝑧 } ) ) | |
| 220 | orcom | ⊢ ( ( 𝑦 ∈ 𝑥 ∨ 𝑦 ∈ { 𝑧 } ) ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) | |
| 221 | 219 220 | bitri | ⊢ ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) |
| 222 | biorf | ⊢ ( ¬ 𝑦 ∈ { 𝑧 } → ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ { 𝑧 } ∨ 𝑦 ∈ 𝑥 ) ) ) | |
| 223 | 221 222 | bitr4id | ⊢ ( ¬ 𝑦 ∈ { 𝑧 } → ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑦 ∈ 𝑥 ) ) |
| 224 | 223 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑦 ∈ 𝑥 ) ) |
| 225 | 224 | ifbid | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) = if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 226 | 209 218 225 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) ∧ ¬ 𝑦 ∈ { 𝑧 } ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 227 | 205 226 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) ∧ 𝑦 ∈ 𝐷 ) → ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) = if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) |
| 228 | 227 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ ( if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ( +g ‘ 𝑅 ) ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 229 | 167 182 228 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) |
| 230 | 141 229 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ↔ ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ( +g ‘ 𝑃 ) ( ( 𝑋 ‘ 𝑧 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑧 , 1 , 0 ) ) ) ) ) ) |
| 231 | 92 230 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 ) ) → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 232 | 231 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 233 | 232 | a2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 234 | 91 233 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 235 | 234 | expcom | ⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝜑 → ( ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 236 | 235 | a2d | ⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑥 , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) ) |
| 237 | 54 63 72 81 87 236 | findcard2s | ⊢ ( ( 𝑋 supp 0 ) ∈ Fin → ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) ) |
| 238 | 38 237 | mpcom | ⊢ ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ 𝐷 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) ) |
| 239 | 32 238 | mpd | ⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ ( 𝑋 supp 0 ) , ( 𝑋 ‘ 𝑦 ) , 0 ) ) ) |
| 240 | 30 239 | eqtr4d | ⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 241 | 32 | resmptd | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) = ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) |
| 242 | 241 | oveq2d | ⊢ ( 𝜑 → ( 𝑃 Σg ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 243 | 115 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) : 𝐷 ⟶ 𝐵 ) |
| 244 | 11 16 19 21 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑘 ) = 0 ) |
| 245 | 244 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
| 246 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) → 𝑘 ∈ 𝐷 ) | |
| 247 | 107 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 248 | 3 247 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 249 | 248 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) |
| 250 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | |
| 251 | 6 112 7 250 44 | lmod0vs | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 252 | 104 111 251 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 253 | 249 252 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 254 | 246 253 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 0 · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 255 | 245 254 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) = ( 0g ‘ 𝑃 ) ) |
| 256 | 255 19 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑋 supp 0 ) ) |
| 257 | 18 | mptex | ⊢ ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V |
| 258 | funmpt | ⊢ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) | |
| 259 | fvex | ⊢ ( 0g ‘ 𝑃 ) ∈ V | |
| 260 | 257 258 259 | 3pm3.2i | ⊢ ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
| 261 | 260 | a1i | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
| 262 | suppssfifsupp | ⊢ ( ( ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑋 supp 0 ) ∈ Fin ∧ ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑋 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) | |
| 263 | 261 38 256 262 | syl12anc | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 264 | 6 44 96 19 243 256 263 | gsumres | ⊢ ( 𝜑 → ( 𝑃 Σg ( ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ↾ ( 𝑋 supp 0 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 265 | 242 264 | eqtr3d | ⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ( 𝑋 supp 0 ) ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |
| 266 | 240 265 | eqtrd | ⊢ ( 𝜑 → 𝑋 = ( 𝑃 Σg ( 𝑘 ∈ 𝐷 ↦ ( ( 𝑋 ‘ 𝑘 ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑘 , 1 , 0 ) ) ) ) ) ) |