This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbag | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | cnveq | ⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) | |
| 3 | 2 | imaeq1d | ⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝐹 “ ℕ ) ) |
| 4 | 3 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 5 | 4 1 | elrab2 | ⊢ ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 6 | nn0ex | ⊢ ℕ0 ∈ V | |
| 7 | elmapg | ⊢ ( ( ℕ0 ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) ↔ 𝐹 : 𝐼 ⟶ ℕ0 ) ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) ↔ 𝐹 : 𝐼 ⟶ ℕ0 ) ) |
| 9 | 8 | anbi1d | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
| 10 | 5 9 | bitrid | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |