This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lssvscl.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lssvscl.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| lssvscl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lssvscl.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lssvscl.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | lssvscl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 5 | simpll | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) | |
| 6 | simprl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 8 | 7 4 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ ( Base ‘ 𝑊 ) ) |
| 9 | 8 | ad2ant2l | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑌 ∈ ( Base ‘ 𝑊 ) ) |
| 10 | 7 1 2 3 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
| 11 | 5 6 9 10 | syl3anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
| 12 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 14 | 7 12 13 | lmod0vrid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 · 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 𝑋 · 𝑌 ) ) |
| 15 | 5 11 14 | syl2anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 𝑋 · 𝑌 ) ) |
| 16 | simplr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) | |
| 17 | simprr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → 𝑌 ∈ 𝑈 ) | |
| 18 | 13 4 | lss0cl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
| 20 | 1 3 12 2 4 | lsscl | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ∈ 𝑈 ) |
| 21 | 16 6 17 19 20 | syl13anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ∈ 𝑈 ) |
| 22 | 15 21 | eqeltrrd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |