This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3an1.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl3an1.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl3an1.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) | |
| 3 | 1 | 3anim1i | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |
| 4 | 3 2 | syl | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |