This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span preserves subset ordering. ( spanss analog.) (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| aspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| Assertion | aspss | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝐴 ‘ 𝑇 ) ⊆ ( 𝐴 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| 2 | aspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) ∧ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ) → 𝑇 ⊆ 𝑆 ) | |
| 4 | sstr2 | ⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑡 → 𝑇 ⊆ 𝑡 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) ∧ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ) → ( 𝑆 ⊆ 𝑡 → 𝑇 ⊆ 𝑡 ) ) |
| 6 | 5 | ss2rabdv | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ⊆ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇 ⊆ 𝑡 } ) |
| 7 | intss | ⊢ ( { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ⊆ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇 ⊆ 𝑡 } → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇 ⊆ 𝑡 } ⊆ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇 ⊆ 𝑡 } ⊆ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 9 | simp1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → 𝑊 ∈ AssAlg ) | |
| 10 | simp3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑆 ) | |
| 11 | simp2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ 𝑉 ) | |
| 12 | 10 11 | sstrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑉 ) |
| 13 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 14 | 1 2 13 | aspval | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑇 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑇 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇 ⊆ 𝑡 } ) |
| 15 | 9 12 14 | syl2anc | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝐴 ‘ 𝑇 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑇 ⊆ 𝑡 } ) |
| 16 | 1 2 13 | aspval | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 18 | 8 15 17 | 3sstr4d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝐴 ‘ 𝑇 ) ⊆ ( 𝐴 ‘ 𝑆 ) ) |