This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | ||
| mplval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| mplval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplbas.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| Assertion | mplelbas | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 3 | mplval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | mplval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mplbas.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 6 | breq1 | ⊢ ( 𝑓 = 𝑋 → ( 𝑓 finSupp 0 ↔ 𝑋 finSupp 0 ) ) | |
| 7 | 1 2 3 4 5 | mplbas | ⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| 8 | 6 7 | elrab2 | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 ) ) |