This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrcnrg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrcnrg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrcnrg.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| Assertion | psrassa | ⊢ ( 𝜑 → 𝑆 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrcnrg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrcnrg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrcnrg.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) | |
| 5 | 1 2 3 | psrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| 6 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) ) | |
| 8 | eqidd | ⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) | |
| 9 | 3 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 | 1 2 9 | psrlmod | ⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
| 11 | 1 2 9 | psrring | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐼 ∈ 𝑉 ) |
| 13 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
| 14 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 15 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 16 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 17 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 18 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) | |
| 19 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑅 ∈ CRing ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 21 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 22 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 23 | 1 12 13 14 15 16 17 18 19 20 21 22 | psrass23 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) ) |
| 24 | 23 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ( .r ‘ 𝑆 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
| 25 | 23 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑆 ) ( 𝑦 ( .r ‘ 𝑆 ) 𝑧 ) ) ) |
| 26 | 4 5 6 7 8 10 11 24 25 | isassad | ⊢ ( 𝜑 → 𝑆 ∈ AssAlg ) |